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Distributing task-related neural activity
across a cortical network through
task-independent connections

Christopher M. Kim 1,2 , Arseny Finkelstein 3,4, Carson C. Chow 1,
Karel Svoboda 2,5 & Ran Darshan 2

Task-related neural activity is widespread across populations of neurons
during goal-directed behaviors. However, little is known about the synaptic
reorganization and circuit mechanisms that lead to broad activity changes.
Here we trained a subset of neurons in a spiking network with strong synaptic
interactions to reproduce the activity of neurons in the motor cortex during a
decision-making task. Task-related activity, resembling the neural data,
emerged across the network, even in the untrained neurons. Analysis of
trained networks showed that strong untrained synapses, which were inde-
pendent of the task and determined the dynamical state of the network,
mediated the spread of task-related activity. Optogenetic perturbations sug-
gest that the motor cortex is strongly-coupled, supporting the applicability of
the mechanism to cortical networks. Our results reveal a cortical mechanism
that facilitates distributed representations of task-variables by spreading the
activity from a subset of plastic neurons to the entire network through task-
independent strong synapses.

Large-scale measurements of neural activity show that learning can
rapidly change the activity of many neurons, resulting in widespread
changes in task-related neural activity1–5. For instance, a goal-directed
behavior involvingmotor planning leads towidespread changes across
the motor cortex1.

To gain insights into the circuit mechanism behind the observed
widespread activity, it is critical to understand how interconnected
neural circuits modulate their synaptic connections to produce the
observed changes in task-related neural activity. Tracking synaptic
modifications during learning6–9 and manipulating them to demon-
strate a causal link with behavioral outputs10–14, show that synaptic
plasticity underlies learned behaviors and changes in neural
activity15,16. However, it is highly challenging to conduct multi-scale
experiments that monitor and manipulate learning-specific synaptic
changes at cellular resolution across a wide region of cortical

networks, while measuring the resulting neural activity17. Thus, it
remains unclearwhat aspects of the synaptic connections aremodified
to produce the widespread changes in task-related neural activity.

Here we investigated if the task-related activity, learned locally by
modifying synaptic inputs to a dedicated subset of neurons, can
spread across the network through pre-existing, task-independent,
synaptic pathways. Although distributed neural activity may result
from broad changes in synaptic connections across a neural network,
we hypothesized that recruiting only a small subset of neurons is
sufficient to generate the distributed task-related neural activity. To
test this hypothesis, we used recurrent neural networks that provide a
powerful data-driven approach for investigating how synaptic mod-
ifications can support the observed task-related neural activity18–22.

In typical implementations of network training, the synaptic
inputs to all the neurons in the network are considered to be plastic, in
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that the activity of every neuron is fit to the activity of experimentally
recorded neurons, thereby constraining the entire network activity to
the neural data19–21. In this study, we instead trained the synaptic inputs
to only a subset of neurons in a biologically plausible network to
reproduce the activity of recorded neurons. The network consisted of
excitatory and inhibitory populations of spiking neurons with sparse
and strong connections23–25. Such pre-existing, task-independent,
connections made the network settle into a cortical-like dynamical
regime, where excitation and inhibition balanced each other23,25,26,
resulting in temporally irregular spikes and heterogeneous spike
rates27.

We applied our modeling framework to study the spread of task-
related activity in the anterior lateral motor cortex (ALM) of mice
performing a memory-guided decision-making task21. Similarly to
neurons in the primatemotor cortex28–30, the activity of many neurons
in ALM ramps slowly during motor preparation and is selective to
future actions21,31,32. These task-related activity patterns are widely
distributed across the ALM and are highly heterogeneous across
neurons.

When a small number of synapses was trained to reproduce the
ALM activity in a subset of neurons, we found that, surprisingly, the
emerging activity in the untrained model neurons closely matched
the responses of ALM neurons held out from training. In other words,
the task-related ALM activity, learned by modifying synaptic inputs to
only a subset of neurons, spread to other untrained neurons in the
networkwithout further training andproduced activity that resembled
the actual responses of ALM neurons. Analysis of the trained networks
revealed that the pre-existing strong synapses between the neurons
mediated the propagation of the task-related activity. The trained
activity failed to spread in networks of neurons that were not strongly
coupled. Optogenetic perturbation experiments of ALM activity pro-
vided additional evidence that the ALM network is strongly coupled,
supporting the applicability of the proposedmechanism for spreading
the trained activity to cortical networks.

Our work provides a general circuit mechanism for spreading
activity in cortical networks. It suggests that task-related activity
observed in cortical regions during behavior can emerge from sparse
synaptic reorganization to a subset of neurons and then propagate to
the rest of the network through the strong, task-independent
synapses.

Results
Training strongly coupled spiking networks with sparse
synapses
Our spiking network was based on a cortical circuit model that pro-
vided mechanistic explanation of the canonical features of cortical
activity, such as temporally irregular spike trains, large trial-to-trial
variability and a wide range of firing rates across neurons23–25,27,33. It
consisted of excitatory (E) and inhibitory (I) neurons sparsely and
randomly connected by strong synapses (Fig. 1A, solid arrows). This
initial EI network structure, due to its random connectivity, was inde-
pendent of the task to be learned. In addition, the strong excitatory
and inhibitory synaptic inputs were dynamically balanced to maintain
a stable network state, known as the balanced regime. As in the cortex,
neurons, driven by fast fluctuating synaptic inputs, emitted spikes
stochastically in this network state.

We developed a training scheme to train these spiking networks,
while keeping them in the balanced regime (see Methods and below).
We used this scheme to train sparse synapses to a subset of neurons in
the EI spiking network, referred to as Subset Training, to generate
target activity patterns in the subset of neurons, while keeping the
synaptic inputs to rest of the neurons untrained (Fig. 1A, left). After
training the synaptic inputs to the selected subset of neurons, we
analyzed if the learning-related changes in activity spread throughout
the network (Fig. 1A, right).

To model the effects of learning in the subset of neurons, we
introduced a relatively small number of plastic synapses (Fig. 1A,
magenta arrows) to an existing EI network (Fig. 1A, solid arrows), with
no overlap between the plastic and existing EI synapses. The plastic
synapses were connected to the selected subset of neurons from
randomly chosen excitatory and inhibitory neurons in the network and
also from a pool of external neurons emitting stochastic spikes mod-
eled by the Poisson process (see Methods for details). These plastic
synapses were sparser than the static, task-independent (random) EI
connections, in part, motivated by the synaptic connectivity found in
the cortex that is sparse but functionally biased34. For instance, with
K = 1000 static synapses, there were of the order of

ffiffiffiffi
K

p
≈30 plastic

synapses per neuron (Fig. S1). Superimposing plastic synapses to the
existing EI network resulted in synaptic input to the subset that con-
sisted of two components: 1) a component that entered through the
strongly coupled random EI network connectivity that were not
trained, butmade the network operate in the balanced regime (Fig. 1B,
ubal), and 2) a plastic component that entered through the plastic
synapses that were optimized by the learning process (Fig. 1B, uplas).
During network training, a synaptic learning rule based on recursive
least squares19,35–37 optimized the strength of plastic synapses to neu-
rons in the subset, so that total input to each trained neuron (Fig. 1B,
ubal + uplas) followed the neuron’s target activity pattern (Fig. 1B, cyan
sine wave). We note that the plastic connections to trained neurons
were allowed to flip their signs after training (see Fig. S8A for the
distribution of plastic weights and Methods); the untrained neurons,
on the other hand, only received synaptic inputs through the initial EI
network connections.

This arrangement of plastic synapses, which connected only to
the selected subset of neurons, allowed us to examine the role of the
pre-existing recurrent connections of the EI network in spreading the
trained activity to the untrained neurons, which were not targeted by
the plastic synapses. In addition, due to their sparsity, the plastic
synaptic inputs were substantially weaker than the strong excitatory
and inhibitory synaptic inputs of the existing EI network (Fig. 1B). This
allowed the network to stay in the balanced regime after training and
supported robust network training, independent of the density of
synaptic connections (Fig. S1; see Methods for full description of the
training and details on the sparse plastic synapses).

In the trained network, the total synaptic input to each trained
neuron was able to successfully follow the target patterns (Fig. 1B, left;
Fig. 1C). The statistics of spiking activity of the trained network were
similar to those of untrained, strongly coupled EI networks, thus
consistent with the spiking activity of cortical neurons. Specifically,
due to the highly fluctuating balanced input, the spike trains of each
neuron were irregular and exhibited large trial-to-trial variability
(Fig. 1D, Fano factor = 1.4)23,24,38. The firing rate distribution was also
highly skewed andwaswell approximated by a log-normal distribution
(trained model: Fig. 1E, neural data: Fig. S2D)27.

We demonstrate in following sections that the temporally irre-
gular and heterogeneous spiking activity is not just cosmetics. Instead,
the strongly coupled excitatory-inhibitory connections responsible for
generating noisy spikes have consequences on how task-related neural
activity is represented in the cortical network.

Spread of trained neural activity to untrained neurons
We applied the Subset Training method to reproduce the firing rate
patterns of cortical neurons recorded from the anterior lateral motor
cortex (ALM) during a memory-guided decision-making task21. Mice
learned to respond to an optogenetic stimulation of neurons in the
vibrissal somatosensory cortex (vS1) by licking right when stimulated
and licking left otherwise (Fig. 2A). For training networks and analysis
of trained networks, we used the electrophysiological recordings in
ALM of the spiking activity of putative pyramidal neurons (excitatory;
Npyr = 1824) and putative fast-spiking neurons (inhibitory; Nfs = 306)

Article https://doi.org/10.1038/s41467-023-38529-y

Nature Communications |         (2023) 14:2851 2



when the mice responded correctly to lick-right and lick-left
conditions.

We asked what aspects of the network connectivity should
change to reproduce the activity of ALM neurons in a strongly cou-
pled spiking neural network. In previous studies, in which networks
were trained to generate specific patterns of neural activity, all the
units in the network were trained to reproduce the target activity
patterns18–21. Here, we trained only a subset of neurons, embedded in
the strongly coupled EI network, to reproduce the spiking activity of
ALM neurons. By analyzing the activity of neurons in the trained
network, we found that synaptic reorganization to a subset of neu-
rons was sufficient to generate the observed ALMactivity throughout
the entire network, including the untrained neurons. Importantly,

the spread of target activity patterns from the subset of trained
neurons to the rest of neurons was not observed in a network that
was not strongly coupled (Figs. S9, S10). This suggests that the
spread of trained activity to untrained neurons is a characteristic of
strongly-coupled networks, but not a general outcome of recurrent
networks.

The network connectivity of initial balanced network was set up,
such that the excitatory and inhibitory population rates were con-
sistent with the population rates of ALM pyramidal and fast-spiking
neurons, respectively. In addition, the firing rates of model and ALM
neurons were both log-normally distributed27, which allowed us to
easily pair each ALM neuron with amodel neuron to be trained based
on the proximity of their mean firing rates (Fig. S2D, Methods). Our

Fig. 1 | Training a subset of neurons in a strongly coupled spiking neural net-
work with sparse plastic synapses. A Schematic of the Subset Training method
(left). The network consisted of excitatory (green) and inhibitory (orange) neurons.
Selected neurons (darkmagenta, left) were trained to generate task-related activity
patterns, modeled here as 1Hz sine waves with random phases (cyan curves), by
modifying plastic synapses (dashed arrows, magenta) to the selected neurons. The
static synapses (solid arrows, excitatory: green, inhibitory: orange) remained
unchanged throughout training. External stimulus (blue pulse) triggered the neu-
rons to generate the trained activity patterns. After training (right), task-related
activity could potentially spread to the rest of the untrained neurons (light
magenta, right). B The total synaptic input (left panel, in arbitrary units (a.u.)) to a
trained neuron followed the target pattern (cyan) when triggered by an external

stimulus (blue region). The total input is the sum of the balanced input, denoted as
ubal, from static synapses (black; middle panel) and the plastic input, denoted as
uplas, from plastic synapses (magenta; right panel). The balanced and plastic inputs
can be further divided into excitatory (green) and inhibitory (orange) inputs. The
spike-threshold of the neuron is at 1 (red dotted line). Note the scale difference
between the balanced and plastic inputs. C Additional examples of the total
synaptic inputs (same as the left panel in (B)) to trained neurons (bottom) following
the target patterns (cyan); the 200msmoving average is shown in gray. Spike trains
emittedby the neurons across 30 trials are shownon the top.D Fano factor of spike
counts across 30 trials. E The log of firing rates of trained neurons. All neurons in
the network were trained in this demonstration of the Subset Training method.
Source data are provided as a Source Data file.
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modeling approach assumed that the firing rate dynamics generating
the noisy spike trains of ALM neurons change smoothly in time.
Hence, for the training targets, we used smoothed trial-averaged
peri-stimulus time histogram (PSTH) of pyramidal neurons recorded
in ALM during the delay period (Fig. 2B, bottom; for details see
Methods).

Following this training scheme, we trained a subset of excitatory
neurons in themodel network to reproduce the target activity patterns
(73% of the excitatory or 36% of all the neurons, Fig. 2C). Each trained
neuron received recurrent plastic synapses from randomly selected
excitatory and inhibitory neurons in the network and feedforward
plastic synapses from external neurons, which accounted for the
potential inputs from outside the ALM. By modifying the plastic
synapses, the trained neurons reproduced two PSTHs, corresponding
to lick-right and lick-left conditions, when evoked by two different
stimuli. The rest of the excitatory, as well as all of the inhibitory neu-
rons in the network, were not trained (Fig. 2C).

After training, the firing rate of trained excitatory neurons suc-
cessfully reproduced the PSTHs of pyramidal neurons (Fig. 2B, top;
Fig. S2A,B), even though the plastic synaptic inputs were substantially
weaker than the excitatory and inhibitory inputs from the static
synapses (Fig. S2C, right). To estimate the smooth PSTHs in model
neurons, we simulated the trained network over multiple trials and
used the trial-averaged firing rates of the model neurons (the
smoothness of which depended on the number of trial averages). We
estimated the correlations between single neuron PSTHs in the model
and in the data (Fig. S2C, left), as well as the similarity in their popu-
lation activity (Fig. 2E, left) to asses the success of the training. For the
latter, we performed Principal Component Analysis (PCA) on the
PSTHs of neurons, which is a dimensionality reduction technique used
for identifying a set of activity patterns that captures a large fraction of
variance in the population activity.We found that the projection of the
PSTHof apyramidalALMneurononto thefirst PCwasa good indicator
for how well a trained excitatory neuron could fit the pyramidal ALM

Fig. 2 | Reproducing ALM activity in a subset of neurons and the spread of
trained activity to the entire network. A Schematic of the experimental setup.
Mice learned to lick right when the optogenetic simulation was delivered to
vibrissal somatosensory (vS1) neurons and to lick left when there was no stimu-
lation. The spiking activity of ALM neurons was recorded during the task. B Trial-
averaged firing rates and raster plots of the spike trains acrossmultiple trials (lick-
right: blue, lick-left: red). Trained excitatory model neurons (top) and pyramidal
ALM neurons used for training the excitatorymodel neurons (bottom).CA subset
of excitatory neurons in the spiking neural network learned to reproduce the
PSTHs of pyramidal ALM neurons. The rest of the neurons in the network were

not trained. After training, the activity of untrained inhibitory model neurons was
compared to the activity of fast-spiking ALM neurons. D Trial-averaged firing
rates and raster plots of the spike trains acrossmultiple trials (lick-right: blue, lick-
left: red). Untrained inhibitorymodel neurons (top) and fast-spiking ALM neurons
(bottom) that best resembled the PSTHs of the inhibitorymodel neurons (see also
Fig. 3 and Fig. S4). E, F The principal components (PCs) of the PSTHs of excita-
tory/pyramidal and inhibitory/fast-spiking neurons (model/data) and the cumu-
lative variances explained by the PCs. Source data are provided as a Source
Data file. Adapted from ref. 76.
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neurons (Fig. S2C). The principal components (PCs) of the PSTHs of
the trained excitatory neurons closely matched the PCs of the pyr-
amidal neurons. Moreover, the first six PCs explained close to 80% of
the trained neurons’ activity, thus the recurrent network displayed
low-dimensional dynamics as in the pyramidal neurons inALM (Fig. 2E,
right)39.

Next, we examined the activity of the untrained model neurons
(64% of the neurons). Similarly to the trained excitatory neurons, their
activity tended to ramp before go-cue and was choice-selective
(Fig. 2D, top). The PCs of their PSTHs were almost identical to the
trained excitatory neurons (Fig. 2F, right; Fig. S3E). Thisfinding showed
that cortical-like activity generated within the subset of excitatory
neurons spread to the rest of the network without additional synaptic
reorganization to the untrained neurons.

Finally, we found that the PCs of the PSTHs of the fast-spiking
ALM neurons, whose activity was not learned by the network, were
almost identical to the PCs of the untrained inhibitory model neu-
rons (Fig. 2F, right). A good agreement between the untrained model
neurons and the held-out neural data supported the hypothesis that
cortical-like activity learned within a subset of neurons can spread
and produce cortical-like activity in the entire network. This could
explain why the activity of putative fast-spiking neurons in ALM is
heterogeneous, yet is very similar to the activity of putative pyr-
amidal neurons21.

Similarity between untrained model neurons and ALM neurons
To further investigate the similarities between the activities of the
untrained inhibitory neurons in the trained network and the fast-
spiking ALM neurons, we compared their PSTHs at the single neuron
and population levels.

At the single neuron level, we identified an untrained inhibitory
neuron that bestmatched each fast-spiking ALM neuron, based on the
mean-squared-error of the PSTHs of all possible pairings between the
ALM neuron and the population of inhibitory model neurons. Fig-
ure 3A shows the PSTHsof severalmatchedpairs and their correlations
for the lick-right and lick-left trials (see Fig. S4 for all the matched
pairs). Evaluating the correlations of all thematched pairs showed that
they were significantly higher than the spurious correlations obtained
by matching the fast-spiking ALM neurons to inhibitory neurons in an
untrained balanced network (Fig. 3B, left; two sample Kolmogorov-
Smirnov tests; p-value < 0.0001).

To elucidate which aspects of the fast-spiking ALM activity were
captured by the untrained inhibitory neurons in the trained network,
we examined if certain activity patterns of the fast-spiking ALM neu-
rons were indicative of the goodness-of-fit to the model neurons. We
found that theprojectionof the PSTHsof the fast-spikingALMneurons
onto their first PC, a ramping mode that captured over 70% of the
variance in the ALM activity (see PC1 in Fig. 2F), was a good indicator
for how well the untrained model neurons could fit the fast-spiking
ALM neurons (Fig. 3B, right). This analysis suggested that the ramping
mode was the dominant component of the trained activity that was
transferred to the untrained inhibitory neurons and shared with the
fast-spiking ALM neurons.

We systematically examined the activity patterns shared by the
populations of untrained inhibitory neurons and fast-spiking ALM
neurons, by analyzing the shared-variancebetween the twopopulation
activities. The shared-variance analysis identified population vectors
along which two population activities co-variedmaximally and yielded
population-averaged activity along those directions (shared compo-
nents) and the proportion of variance explained by the shared com-
ponents (shared variance; see40 and Methods for details). The shared
components (SCs) were similar to the PCs of the untrained inhibitory
subnetwork and fast-spiking ALMactivities (compare the SCs in Fig. 3C
to the PCs in Fig. 2F), and the first four components captured most of
the shared variance (Fig. 3C). In particular, consistent with the single

neuron analysis shown in Fig. 3B, the first shared component was a
ramping mode (SC1 in Fig. 3C).

In addition to the spiking activity patterns, we asked if functional
properties, such as choice selectivity, were transferred to the
untrained neurons in the trained network. It has been shown that
pyramidal ALM neurons in mice display selectivity to the animal’s
choice21, 39,41 (Fig. S5; absolute value of selectivity index: 0.43 ±0.35,
mean± SD; see Methods). As expected, the excitatory model neurons,
trained to reproduce the activity of pyramidal ALM neurons, also dis-
played choice selectivity (absolute selectivity: 0.33 ± 0.28). Interest-
ingly, we also found that the fast-spiking ALM neurons in the neural
datawere choice selective (Fig. 3D,E; see also Supplementary Fig. 2 in21;
absolute selectivity: 0.40 ±0.39). These observations led us to exam-
ine if the untrained inhibitoryneurons in the trainednetwork exhibited
choice selectivity, as in the fast-spiking ALM neurons.

To this end, we analyzed the difference of the PSTHs to two trial
types (lick-right versus lick-left) in all the untrained inhibitory neu-
rons and found that they displayed choice selectivity (Fig. 3D;
absolute selectivity: 0.22 ± 0.19, compared with 0.031 ± 0.036 of the
null model of Fig. S10). Moreover, the distribution of the choice
selectivity of fast-spiking ALM neurons and untrained inhibitory
neurons were in good agreement (Fig. 3E), although the selectivity of
the inhibitory model neurons were slightly weaker than the fast-
spiking ALM neurons, potentially due to the weaker selectivity of
trained excitatory model neurons with respect to selectivity of pyr-
amidal neurons, caused by imperfect training. This finding shows
that not only the trained neural activity can propagate throughout
the network, but the choice selectivity emerged in a subset of neu-
rons can spread to the untrained parts of the network as well. In
particular, this suggests an alternative mechanism for how selectivity
may emerge in inhibitory neurons. In contrast to previous models
that required specific connectivity between excitatory-inhibitory
neurons for selective responses to emerge42,43, our model suggests
that choice selectivity in inhibitory neurons can arise in strongly
coupled networks even when the connections to the inhibitory
neurons are non-specific.

Training inhibitory neurons improves the spread of activity
So far, we showed that the cortical-like activity originating from the
excitatory neurons can spread to the untrained inhibitory neurons.
Next, we asked how the spreading of trained activity may depend on
the type of neurons being trained. To address this question, we con-
sidered two training scenarios where either the excitatory or the
inhibitory subnetwork (but not both) was trained to generate the tar-
get activity patterns (Fig. 4A, right).

The number of fast-spiking ALM neurons recorded from the mice
(Nfs = 306) was, however, too small to train the inhibitory neurons in
large-scale spiking neural networks. We thus developed a method to
generate synthetic neural activity that had similar low-dimensional
dynamics as the ALM neurons. Briefly, we first performed principal
component analysis on the PSTHs of ALM neurons to obtain the PCs
(Fig. 2E,F) and the empirical distribution of each PC’s loading on the
neurons. To construct a synthetic target activity for neuron i, we
sampled (1) a baseline rate ri from the firing rate distribution and (2)
each PC’s loading on the neuron from the empirical distribution,
conditioned on the rate ri (see Fig. S6 and Methods for details).
Applying this method to the lick-left and lick-right trial types and to
pyramidal and fast-spiking neuronal types, wewere able to generate an
unlimited number of cortical-like PSTHs needed for training large-
scale networks consisting of, e.g., N = 30, 000 neurons. In particular,
these synthetic neural activities had statistically identical low-
dimensional dynamics as the ALM neurons (Fig. S6E).

Using the synthetic neural activity as the target activity patterns,
we performed the two training scenarios where we trained a subset of
neurons in the excitatory or the inhibitory subnetwork to reproduce
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the synthetic neural activity. Following training, we compared the
spiking activities of the untrained neurons in the subnetworks that
were not trained.

We first observed that the PCs of synthetic neural activity was
transferred to the untrained neurons when a sufficient number of
neurons were trained (Fig. 4D, right). Such transfer of PCs was similar
to what we found in the untrained inhibitory neurons when the exci-
tatory neurons were trained on the activity of ALM pyramidal neurons
(Fig. 2E,F). Based on the transfer of PCs and the low dimensionality of
ALM activity, we used the variance explained by the first six PCs of the

PSTHs of the untrained neurons to quantify the transferred cortical-
like activity. In the trained neurons, the first six PCs explained 80% of
the activity, regardless of the trained neuronal type (E or I) or the
fraction of trained neurons (Fig. S7A). On the other hand, the cortical-
like activity transferred to the untrained neurons gradually increased
with the fraction of trained neurons.Moreover, the transferred activity
was stronger by 20% when the inhibitory subnetwork was trained,
compared to when the excitatory subnetwork was trained (Fig. 4A,
left). Using the first six PCs of the ALM fast-spiking neurons (i.e., data
PCs), instead of the PCs of untrained model neurons (i.e., model PCs),

Fig. 3 | Untrained inhibitory neurons in the trained network display similar
task-related activity to the fast-spiking neurons recorded in the ALM.
A Examples of the PSTHs of untrained inhibitory neurons (lick-left: red, lick-right:
blue) thatbestfit the PSTHsof fast-spikingALMneurons (black). Correlations of the
matched pairs are shown in each panel.BCorrelations between the PSTHs of all the
matched inhibitory model neurons and the fast-spiking ALM neurons for the lick-
right and lick-left trial types (left). The null network shows the correlation between
the PSTHs of the fast-spiking ALM neurons and the best-fit neurons in the initial
balanced network, i.e., without training. The PSTHs of the neurons in the trained
and the null networks were both obtained by averaging the spike trains from 400
trials starting at random initial conditions. The p-values of the two-sample Kol-
mogorov-Smirnov tests between the trained and null networks for both trial types
are shown (p-value = 10−51 (Right), 10−18 (Left)). PC1 (right) represents the projection
of the PSTH of a fast-spiking ALM neuron onto the first PC, i.e., the ramping mode
(see Fig. 2F). R-squared value of the linear regression is shown. C Shared compo-
nents (SC) and the cumulative shared variance explained by them for the lick-right

(top) and lick-left trial types (bottom). The null network shows the shared variance
between the fast-spiking ALM neurons and the initial balanced network. D Choice
selectivity of all the untrained inhibitory neurons in the trained network (left) and
the fast-spiking ALM neurons (middle). Choice selectivity was defined at each time
point as the difference of the PSTHs to the lick-right and lick-left trial types, and
then normalized by the average firing rate of each neuron. E Distribution of choice
selectivity of untrained inhibitory neurons in the trained network (orange) and fast-
spiking ALM neurons (black). Choice selectivity of a neuron shown here was
obtained by averaging the choice selectivity over the 2 second timewindow shown
in (D). Note that there are more right selective fast-spiking ALM neurons than
expected by themodel. This might result from asymmetries in the task design. The
mouse is instructed to lick right by optogenetic activation of sensory neurons,
while it learned to lick left in the absenceof such activation. In addition,most of the
data were acquired from left ALM, which previous studies also showed that this
leads to a bias for right selective neurons (e.g.21). We did not model these effects.
Source data are provided as a Source Data file.
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to quantify the cortical-like activity in the untrained neurons yielded
similar results.

To understand what allowed the activity patterns of inhibitory
neurons to spread better to the untrained neurons, we examined the
differences in the spiking activities of the pyramidal and fast-spiking
ALM neurons. The mean firing rate of each neuron was subtracted
from its PSTH to remove the differences in the baseline firing rates of
the pyramidal and fast-spiking ALM neurons (Fig. 4B, right). The
principal component analysis of the centered PSTHs revealed that the
strength of every PC was stronger in the fast-spiking neurons than in
the pyramidal neurons, when the loadings on each PC were averaged
over the population of neurons (Fig. 4B, left). This analysis showed that
the modulation of firing rate around the mean rate was larger in the
fast-spiking neurons, raising the possibility that stronger rate mod-
ulation leads to stronger activity transfer.

To test if stronger modulations in the trained activity patterns
would increase the transferred activity to the untrained neurons, we
adjusted the modulation strength of the synthetic inhibitory activity
and trained a fixed subset of inhibitory neurons (40% of the inhibitory
neurons) to generate target activity patterns with different levels of
rate modulations. We found that, in the untrained excitatory neurons,
the variance explained by the cortical-like activity increased

monotonically with the modulation strength of the trained inhibitory
neurons. (Fig. 4C). These results suggested that the stronger rate
modulations in the fast-spiking ALM neurons enabled the trained
inhibitory neurons in themodel to spread their activity patterns to the
untrained neurons more effectively. It also suggested that inhibitory
neurons, whose baseline spiking rates are typically higher than the
excitatory neurons in cortex (e.g., mean firing rates of ALM pyramidal
and fast-spiking neurons were ~ 4Hz and ~ 11Hz, respectively, in our
data), can support stronger rate modulations and potentially play a
more significant role in spreading the trained activity patterns.

The finding that activity patterns with strong rate modulation
spread better was also observed across the PCs. The leading PCmodes
of theALMspiking activity showed strongermodulation than theother
PC modes, as expected, since the leading PC modes capture more
variance (Fig. 4B). To quantify how well the trained PCs transferred to
the untrained neurons, we computed the correlation between the PC
modesof the trained and transferred activity (Fig. 4D, left). The leading
PC modes (PC1 to PC3) transferred with high fidelity even when only
20% of the neurons were trained. On the other hand, the transfer of
PC4 to PC6 improved gradually when the fraction of trained neurons
increased. This result suggested that the leading PC modes, due to
their strong modulations, can spread more robustly to the rest of the

Fig. 4 | Trained activity originating from the inhibitory subnetwork spreads
more effectively than the trained activity from the excitatory subnetwork.
A Schematic of two training scenarios (right). A subset of neurons in the excitatory
subnetwork (top) or the inhibitory subnetwork (bottom) was trained to reproduce
synthetic neural activity. The fraction equals 1 (left) if all the neurons in the trained
subnetwork are trained. The transferred activity was defined as the variance
explained by the first six PCs of the PSTHs of all the neurons in the untrained
subnetwork. B The strength of PCs of the PSTHs of pyramidal and fast-spiking ALM
neurons (left). The absolute value of the loading of each PCon all the neurons in the
population was averaged to obtain the average strength of each PC, denoted as k.
Examples of centered PSTHs (right), i.e., mean rate subtracted, showing that the
strength of the ith PC, denoted as ki, was stronger in the fast-spiking ALM neurons.

C The modulation of the trained synthetic inhibitory rate was adjusted by scaling
the centered PSTH by a multiplicative factor, referred to as the relative strength of
modulation. For instance, it equals 2 if the centered PSTHs are doubled. As in (A),
the transferred activity was defined as the variance explained by the first six PCs of
the PSTHs of all the untrained excitatory neurons. The fraction of trained inhibitory
neurons in the inhibitory subnetwork was 0.4. D The fidelity of transferred PCs
(left) was defined by the correlation between the PCs of the trained and transferred
activity. A subset of neurons in the excitatory subnetwork was trained, and the
activity of the untrained inhibitory subnetwork was analyzed to obtain the trans-
ferred PCs. Examples of transferred PCs in the untrained inhibitory neurons (right)
are shown, as the fraction of trained neurons is varied.
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neurons, promoting low-dimensional neural dynamics across a
strongly coupled network.

Taken together, our results demonstrate that trained activity
patterns with stronger rate modulations, which can emerge from the
fast-spiking ALM neurons or leading PCmodes, have greater influence
on the untrained neurons in the network.

A network mechanism for distributing trained neural activity
In a recurrent neural network, in which neurons are highly inter-
connected, it may seem obvious that task-related activity can spread
from one part of the network to another part through the recurrent
connections. However, this intuition becomes less clear when the
activity of a neuron is determined by integrating a large number of
heterogeneous presynaptic activities through synapses that are not
optimized for the task, as considered in our network model and is the
case in the cortical network. Indeed, a close examination of networks
with a large number of connections reveals that whether the task-
related activity can spread depends on the operating regime of the
network, as well as on the coherence level of the learned task-related
activity.

When the activity of the trained neurons is coherent, for example,
if most neurons would increase their firing rates before the go-cue in
the delayed-response task, then indeed activity could spread to the
untrained neurons, whichwill also ramp-up before the go-cue. This will
result in a coherent task-related activity, in which both trained and
untrained neurons are increasing their rate before the go cue. How-
ever, the activity of neurons in ALM during the delayed-response task
are highly heterogeneous and are far from being coherent (examples
in Fig. S2B and also Fig. 5H below). In fact, the average firing rate of the
neurons barely varies during the delay period31. Thus, if the synaptic
connections to an untrained neuron randomly sample and sum het-
erogeneous activity patterns of pre-synaptic neurons, one could
expect that the post-synaptic input to the untrained neuron will be
averaged-out. Then, the untrained neuron will not display any task-
related activity patterns.

To directly demonstrate that ALM activity patterns do not spread
if the network does not operate in the balanced regime, we con-
structed a network whose synaptic weights merely averaged the
spiking activities of presynaptic neurons. Unlike the balanced network
that internally generated highly fluctuating synaptic currents, we
injected external noise to neurons in this network to mimic the sto-
chastic spiking of cortical neurons (see Methods and Fig. S10 for
details). We found that the trained excitatory neurons successfully
reproduced the spiking activity ofALMpyramidal neurons and showed
choice selectivity. In contrast, the untrained inhibitory neurons did not
exhibit any temporally structured activity patterns, and, when mat-
chedwith the activity patterns of ALM fast-spiking neurons, the overall
correlation of the bestmatched pairs was indistinguishable from a null
model of an untrained balanced network. Moreover, the untrained
inhibitory neurons did not exhibit choice selectivity (Fig. S10). These
findings demonstrate that the spreadof heterogeneousALMactivity to
untrained neurons is not a general property of recurrent neural net-
works (see also Fig. S9).

In this section, we give an intuitive explanation that hetero-
geneous activity does spread if the network is strongly coupled and
operates in the balanced regime (Fig. 5). In this regime, presynaptic
activity patterns can be preserved in the post-synaptic inputs to
untrained neurons due to the strong synapses, and thenmanifested in
the untrained neuron’s spiking rate due to the dynamic cancellation of
the large, unmodulated components of the excitatory and inhibitory
inputs. A detailed explanation, together with a mathematical analysis,
is given in the Methods.

To explain the network mechanism underlying the spread of
trained activity patterns to the untrained neurons in the balanced
regime, we considered a training setup where all the excitatory

neuronswere trained, while the inhibitory neuronswere not.We chose
the training targets to be 2Hz sine functions with random phases.
After training, synaptic inputs to the trained excitatory neurons
followed the target activity patterns (Fig. 5A, top). As a result, the first
two PCs of the trained activities were 2Hz sine and cosine functions
and were the dominant PCs of the trained activities (Fig. 5A, bottom).

To study how the trained activity spread in the network, we next
examined the synaptic inputs to an untrained inhibitory neuron. All
untrained neurons received only static synapses, but no plastic
synapses, from randomly selected trained and untrained presynaptic
neurons. Due to the large number of static synapses and their strong
weights, the mean excitatory (Fig. 5C, uE

t ) and inhibitory (Fig. 5D, uI
t)

inputs to the untrained neuron were much larger, in absolute value,
than the spike-threshold. In addition, the excitatory (Fig. 5C, δutrained

t )
and inhibitory (Fig. 5D, δuuntrained

t ) temporal modulations around their
respective mean inputs developed sizable patterns, which were, how-
ever, significantly smaller than the mean inputs. Since the network
operated in the balanced regime, the large mean excitatory and inhi-
bitory inputs dynamically canceled each other, resulting in the net
mean input to the untrained neuron being around the spike-threshold
(Fig. 5E, ut). Consequently, the spiking pattern of the untrained neuron
was determined by the temporal modulations around the net mean
input (i.e., δutrained

t and δuuntrained
t ).

We further examined the synaptic modulations driven by the
trained excitatory and untrained inhibitory presynaptic neurons.
Analysis of synaptic modulation driven by the trained excitatory neu-
rons (Fig. 5C, δutrained

t ) showed that it was dominated by the same PCs
the excitatory neurons were trained to generate (Fig. 5A). This trained
synaptic modulation then led the total input to the untrained neuron
to bemodulated as well (Fig. 5E, ut). As a result, the untrained neurons
produced modulated activity (Fig. 5B), which then provided modu-
lated inputs to other neurons in the network (Fig. 5D, δuuntrained

t ). The
modulated synaptic drive that the untrained neurons received (Fig. 5E)
and provided to other neurons (Fig. 5D, right) both showed strong
temporal modulations compatible with the PCs acquired from
training.

One of the predictions of this spreading mechanism is that each
PC loading of the synaptic inputs to untrained neurons follows a
Gaussian distribution. This results from the task-independent synapses
that randomly sample the presynaptic activity patterns (and their PC
loadings) and summing them to generate the synaptic inputs (and
their PC loadings) to the untrained neurons. Then, if the task-
independent synapses have strong weights, the sum of the randomly
sampled PC loadings (i.e., the PC loading of the synaptic inputs to
untrained neurons) converges to a Gaussian distribution with a finite
variance (see Methods for details). Indeed, this was the case for the
loadings of the first two PCs in the network trained on sine functions
(Fig. 5G). Then we analyzed the loadings of the dominant PC mode in
the ALM data, which were the slopes of the ramping activity of the
synaptic inputs. Since the synaptic inputs to ALM neurons were not
available, we estimated them by finding inputs to the transfer function
of the model neuron that yielded the observed firing rates of ALM
neurons. We found that the statistics of these loadings were also well-
fitted by a Gaussian distribution, supporting the biological plausibility
of the proposed mechanism (Fig. 5H).

The same network mechanism also provides an explanation for
how functional properties, such as choice selectivity, can spread from
neurons trained to be choice-selective to other neurons that are not
trained (Fig. 3E). It stems from the fact that the differences in the
activity of the lick-left and lick-right trials in the trainedneurons spread
through the random static synapses and are realized into twodifferent
responses in the untrained neurons, thus producing choice selectivity
in them (see Methods for details). In addition, our mathematical ana-
lysis of thenetworkmechanism is consistentwith thefindings that, due
to their strong temporal modulations, inhibitory activity patterns
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spread more effectively than the excitatory activity patterns (Fig. 4A),
and leading PC modes transfer with better fidelity than the other PC
modes (Fig. 4D; see Methods).

The results of our analysis show that trained activity can spread in
the network to untrained neurons as long as the untrained static

synapses are strong, and the network operates in the balanced regime.
As this regime is not sensitive to the number of presynaptic inputs per
neuron, or the network size, this circuit mechanism for distributing
activity in neural networks is robust to variations in these parameters.
Moreover, the slopes of ramping activity in the ALMneurons displayed

Fig. 5 | Network mechanism for distributing trained neural activity to
untrained neurons through strong, non-specific connections. A Excitatory
neurons were trained to generate 2Hz sinusoidal synaptic activity patterns with
random phases. Examples (top) of trained synaptic inputs (black) to the excitatory
neurons and their moving averages over 200ms window (magenta). The absolute
value of the loading of each PCon trained synaptic activities (bottom)was averaged
over all the excitatory neurons to obtain the average strength of the PCs. The first
two PCs, which are the Fouriermodes of 2Hz sine waves, are highlighted (magenta)
and shown in the inset (PC1, PC2). fi’s in the circles (right) represent the spiking
activity of trained neurons. Arrows (green) to an untrained neuron represent ran-
dom, static, excitatory synapses with the synapticweight JE.B Inhibitory neurons in
the network were not trained. Examples of untrained synaptic inputs to inhibitory
neurons (left). ri’s in the circles (right) represent the spiking activity of untrained
neurons. Arrows (orange) to an untrained neuron represent random, static, inhi-
bitory synapses with the synaptic weight JI. C Aggregate synaptic input (in arbitrary
units) from trained excitatory neurons to an untrained inhibitory neuron (uE

t ) and
its temporal modulation (δutrained

t ) around the mean activity. The PCs (right) show
the average strength of each PC in δutrained

t . The PCs corresponding to the trained
activity in panel (A) are highlighted (magenta). D Same as in (C) but for the

aggregate synaptic input from untrained inhibitory neurons in the network to the
same untrained inhibitory neuron shown in (C). E The total synaptic input (ut or the
sumofuE

t anduI
t , black) to the untrained inhibitoryneuronwith themoving average

(magenta). More examples are shown in panel (B). The PCs (bottom) show the
strength of each PC in ut, averaged over all the untrained inhibitory neurons. The
PCs corresponding to the trained activity in panel (A) are highlighted (magenta)
and shown in the inset (PC1, PC2). F Schematic of synaptic inputs shown in panels
(A) to (E). Total synaptic input to trained excitatory neurons (A: black arrow) is the
sum of inputs from excitatory and inhibitory neurons (gray arrows). Total synaptic
input to untrained inhibitory neurons (B,E: black arrow) is the sum of inputs from
excitatory (C: gray arrow) and inhibitory neurons (D: gray arrow). G Distributions
(magenta) of PC1 (k1) and PC2 (k2) loadings on the total synaptic input to the
untrained inhibitory neurons (i.e., ut in panels (B) and (E)), overlaid with the
Gaussian fits (black). The PCs are shown in panel (E), bottom.H Distribution (blue)
of PC1 (k1) loadings on the estimated synaptic inputs to ALMpyramidal neurons for
the lick-right trial type, overlaid with the Gaussian fit (black). The transfer function
of the model neuron was used to estimate the synaptic input that yielded ALM
neuron’s firing rate (seeMethods). PC1ramp

t was a rampingmode, similarly to PC1 in
Fig. 2E. Source data are provided as a Source Data file.
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statistics that agreedwith themodel prediction, providing an evidence
for the biological plausibility of the proposed mechanism.

Perturbation responses suggest that the ALM network is
balanced
We showed that when a subset of neurons was trained to reproduce
the ALM activity, the task-related activity spread to the untrained
neurons, which then also generated spiking activity resembling the
ALM neural data (Figs. 2, 3). Such spreading of activity from trained to
untrained neurons is a general mechanism at play in strongly coupled
spiking networks (Figs. 4, 5). These findings raised the possibility that
the ALM network operated in the same dynamical regime as the

strongly coupled network model when the observed ALM activity was
generated. To test this prediction, we investigated if optogenetic
perturbations to the ALM activity displayed the characteristics of the
balanced regime.

Specifically, we considered the activity modes of population of
neurons responding to perturbations applied during the delay period
(Fig. 6A,B). In strongly coupled networks consisting of excitatory and
inhibitory populations, the projection of the population activity on the
homogeneous mode (i.e. the average firing rate of the excitatory or
inhibitory populations, Fig. 6A) is expected to recover rather fast from
any perturbation. This is because the network dynamics are highly
stable along the homogeneous mode23. To understand this
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phenomenon, one should consider changes to the average firing rate
of the excitatory population in the network. This will result in a strong
change (on the order of square root the number of inputs per neuron)
to the excitatory drive to each of the neurons, which unless immedi-
ately suppressed by a strong inhibitory current, will destabilize the
network. Therefore, to maintain the stability of network dynamics, in
the balanced regime a perturbation to the homogeneous mode is
expected to decay quickly to its pre-perturbed value due to the strong
and fast inhibition (a phenomenon known as ‘fast tracking’23, 44).

Consistent with this known phenomenon, following a perturba-
tion to the activity of neurons in the strongly coupled network in Fig. 2,
the projection on the homogeneous mode quickly returned to the
baseline (Fig. 6D, black). In contrast, the projection of the activity on
the choice mode (Fig. 6B), a mode that maximally separates trial-
averaged activity with respect to licking directions (see21, 41 and Meth-
ods), returned to thebaseline after theperturbationwith a significantly
longer recovery time (Fig. 6D, blue; Fig. 6F, paired Student t-test,
p-value = 0.016). The slow recovery suggested that a dynamic attrac-
tor, which formed around the target trajectory due to training, was
able to retract the perturbed activity at a slow timescale along the
coding mode21,45. Importantly, the network was trained only on the
unperturbed ALM activity. Therefore, the fast and slow responses to
perturbations were not dynamical properties acquired directly from
the perturbed ALM activity, but instead they emerged from the
strongly coupled network, when itwas trained just on the unperturbed
ALM activity.

To test the model prediction regarding the fast recovery of the
homogeneous mode, we conducted the same analysis on single ses-
sions of simultaneously recorded ALM neurons (Fig. 6G-J). We found
that the response time of the homogeneous mode in ALM was sig-
nificantly faster than that of the choicemode (Fig. 6H-J, paired Student
t-test, p-value = 0.025). Thus, the fast recovery of the homogeneous
mode of ALM network, relative to the slow recovery of the choice
mode, to optogenetic perturbations suggested that the ALM network
operated in the same dynamical regime as the strongly coupled
network.

These findings suggest that the ALM network has the potential to
be endowed with a network-level mechanisms for generating wide-
spread task-related activity, with limited synaptic reorganization on
only a subset of neurons during learning.

Discussion
In this study, we presented a potential circuit mechanism for dis-
tributing task-related activity in cortical networks.We have shown that
neural activity learned by a subset of neurons can spread to the
untrained parts of the network through pre-existing random con-
nectivity, without additional training. This spread of activity occurs as
long as the pre-existing random connections are strong and create a
dynamical state, known as the balanced regime. When a subset of

neurons in the spiking networkwas trained to reproduce the activity of
ALM neurons, the activity of untrained neurons in the network also
displayed surprising similarity to the activity patterns of neurons in
ALM. Single neuron activity patterns of the untrained neurons were
ramping and selective to future choices, as was observed in ALM. Our
work suggests thatonly a subset of neuronsmaybe actively engaged in
learning and the rest of the neurons are driven by the structured
activity generated from the trained neurons.

Accumulating evidence shows that inhibition in cortex is highly
plastic (e.g. see reviewby46).We found that thefidelity of spreading the
activitywashigherwhen the inhibitoryneuronswere trained insteadof
the excitatory ones. For example, all of the excitatory neurons needed
to be trained to explain 70% of the variance in the untrained inhibitory
neurons, while training only 60% of the inhibitory neuronswas enough
to induce the same 70% variance in the untrained excitatory neurons
(Fig. 4A). We speculate that this is a characteristic of the operating
regime of cortical networks, in which typically the baseline spiking
rates of inhibitory neurons is higher than the excitatory neurons.
Inhibitory neurons can thus support stronger rate modulations
(Fig. 4B), which in turn improves the fidelity of the spread (Fig. 4A,
Fig. 5, Methods). Our results suggest that synaptic plasticity in inhibi-
tory neurons can lead to wider spread of task-related activity in the
motor cortex. Interestingly, this result is consistent with recent theo-
retical and computational studies showing that patterns of neural
activity are primarily determined by inhibitory connectivity47,48.

In recent studies, the authors of43,49 argued that specific con-
nectivity between excitatory and inhibitory neurons is necessary for
choice selectivity to emerge in these two populations, based on
computational models of their data. Our work suggests an alternative
mechanism in which choice selectivity emerges in one population
during training and spreads to the other population, without any
reorganization of specific connections from the trained to the
untrained populations. The networkmechanism that spreads the task-
related activity through random connectivity, as in our trained net-
works, is based on the susceptibility of neurons to modulations of
synaptic inputs in strongly coupled networks (Fig. 5). In brief, the
strong static synapses preserve the temporal variations in the pre-
synaptic activity. It thus results in choice-selective inputs that are on
the order of the spike-threshold. The recurrent inhibition then cancels
the strong mean excitatory input, leading to a total excitatory and
inhibitory inputs that are both on the order of the spike-threshold and
choice-selective (see Prediction 4 in Methods). This is a similar
mechanism that explains how,without training or functional structure,
orientation-selective neurons can emerge in the primary visual cortex
with a ‘salt-and-pepper’ organization50,51.

Overall, the good agreement between the activity of untrained
neurons in the model and the neurons in the data that were held-out of
training resulted from the similarities between the activity of fast-
spiking and pyramidal neurons in the data. It will be interesting to look

Fig. 6 | Fast and slow responses of the network to perturbations (model and
data). A Schematic of the homogeneous mode, which averages the activity of the
neurons. B Schematic of trial-averaged activity for lick-left (red) and lick-right
(blue) trial types together with the choice mode in the neural activity space. This
mode maximally separates trial-averaged activity with respect to licking directions
(SeeMethods).C Schematic of a trained network receiving perturbation.DChange
in projection on choice mode (blue) and homogeneous mode (black) against time,
averaged over all 10 sessions. Each session consisted of sampling 50 neurons from
the network. The change in projection was calculated as the trial-averaged activity
for perturbed trials minus unperturbed trials (see Methods), with a 50ms
smoothing. Mean ± SEM. Shaded red: time of applied perturbation for perturbed
trials. Dashed lines: exponential fit. E Projection of neural activity on homogeneous
(left) and choice (right) modes for an example session, normalized by subtracting
the average projection over the first 0.5 second of the delay period. Data are pre-
sented asmean values ± SDover trials (shaded area). Orange: significant differences

betweenperturbedandunperturbed trials, starting fromtheperturbation time (see
Methods). Dashed red: recovery time of perturbation, estimated as the first time
the change was not significant following the perturbation (see Methods).
F Recovery time for all sessions. Recovery of the homogeneous mode was sig-
nificantly faster (p-value, by One-sampled paired Student t-test). Error bars pre-
senting mean value ± SEM. G Adapted from Finkelstein, A., Fontolan, L., Economo,
M.N. et al. Attractor dynamics gate cortical information flow during decision-
making. Nat Neurosci 24, 843-850 (2021). https://doi.org/10.1038/s41593-021-
00840-6. Schematic of optogenetic perturbation in themouse cortex.H–J Same as
(D–F), but for putative excitatory neurons in ALM. Here each session corresponds
to simultaneous recordings of ALM neurons on different days. Optogenetic per-
turbation in the data was applied to somatosensory cortex21, whereas in the net-
work model the stimulus that triggered the lick-left response was used to perturb
the lick-right trials. Source data are provided as a Source Data file.
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at other data sets in which task-related activity is more diverse between
different cell types, and explore possible networkmechanisms that can
spread task-related activity which differ between the trained and
untrained populations. In addition, we point out that one important
property of ALMneurons thatmake themcompatiblewith the balanced
network is that, on average, their ramping slopes are close to zero
(Fig. 5H), consistent with the fact that the mean rate of ALM neurons is
almost constantduring thedelayperiod.This kept theoverall rateof the
trained subset constant in time, therefore the trained network did not
deviate significantly from the balanced regime. For neural data with
highly fluctuating average population rates, other network models or
additional networkmechanismsmay need to be considered to account
for strong changes in population rates that could potentially break the
balance in a subset of the neurons.

Our trained network model showed that the proposed circuit
mechanism (i.e., subset training) for distributing task-related activity
to untrained neurons can explain various aspects of neural data.
However, it still remains an open question whether only a subset of
neurons in the real cortical circuit undergoes synaptic reorganization
when learning. Several recent experimental studies show that synaptic
plasticity and induced neural activity in a subset of neurons can
influence learned behavior and broadnetwork responses. It was shown
that labeling recently potentiated spines in a subset of neurons, cre-
ated throughmotor learning, anddisrupting thembyoptical shrinkage
were sufficient to reduce acquired motor skills13. In addition, optoge-
netic stimulation studies targeting a small number of specific cells
show that learning a new motor task or producing realistic network
response can be induced from a small number of neurons20,52–54.
Although not conclusive, these studies support the biological feasi-
bility of subset training.

In this study, we computationally explored the amount of subset
training by varying (1) the number of trainable neurons and (2) the
number of plastic synapses to the trained neurons. Given that biolo-
gically plausible learning rules for synaptic reorganization are based
on activity of locally connected neurons55–57, subset training could
potentially be implemented to induce global learning effects across
thenetworkby reorganizing synaptic connections of locally connected
sub-networks of neurons. In addition, when learning resources are
limited (e.g., limited number of trainable synapses), increasing the
number of trainable neurons may not necessarily lead to improved
performance. Instead, subset training could generate desired dynam-
ics in the trained subset without extensively modifying the synapses
across the population of neurons (see Fig. S11 for an example).

On the other hand, an alternative training scheme that could be
implemented in the brain is to train a larger number of neurons and
synapses throughout the network. Using this approach, recent studies
considered training spiking networks with dynamically balanced
excitation and inhibition.

In58 the authors had to break the EI balance in order to achieve
non-linear computations. With our training procedure, individual
neurons can be trained to perform complex tasks, such as generating
the spiking activity of cortical neurons, without leaving the balanced
regime. The work by59,60 trained all the recurrent weights of the
dynamically balanced spikingnetworks. Tomaintain strong excitatory-
inhibitory activities after training, they considered weight regulariza-
tions that constrained the trained weights close to strong initial EI
weights. Instead, in our training setup, the strong initial EI connections
were left unchanged throughout training, thus always provided the
strong excitation and inhibition.

Other studies showed that a larger number of synapses across the
entire network can be trained successfully, as long as they are weaker
than the strong pre-existing random connections19,35,61. Specifically,
several recent studies showed that it is possible to train networks to
perform tasks by training weak presynaptic inputs, while constraining
their connectivity to be of low-rank62,63. In such networks the activity of

every neuron in the network ismodulated by trained synapses, a setup
that does not allow one to study the role of untrained synapses in
spreading trained activity. This is different from our work, in which we
train only a subset of the neurons and investigate the role of untrained
synapses in spreading the trained activity to untrained neurons.

There is an ongoing debate if the cortex operates in the balanced
regime64. Experimental evidence that are inconsistent with the
balanced regime hypothesis mainly relies on data from sensory cor-
tices. Here we present evidence that the motor cortex operates in the
balanced regime by analyzing the recovery of neurons in the motor
cortex to optogenetic perturbations. The presence of two recovery
time scales, i.e., fast for the homogeneous mode and slow for the
choice mode, is consistent with the prediction of the balance regime
that the homogeneous mode rapidly tracks inputs, a phenomenon
termed ‘fast tracking’23,44. Our analysis is different from the paradoxical
effect observed in excitatory-inhibitory networks, where strong
recurrent excitation must be compensated by strong feedback inhi-
bition to maintain a stable network state65–68.

We note that, due to the sparse plastic synapses in the trained
networks, the plastic input wasmoderately strong (i.e., on the order of
the spike-threshold). The network could thus implement non-linear
computations at the individual neuron level. It can also support non-
linear computations at the population level, as long as the computa-
tion is held by subpopulations, such that the overall excitatory and
inhibitory population rates are unchanged after training (see Methods
and also69,70). Thus, the only mode that is strictly linear with the inputs
to the network is the homogeneousmode. This is different from recent
works that portrayed that the strict linear input-output relationship of
balanced networks limits their computational power58,64.

More broadly, our work shows that the same theory that accounts
for the irregular nature of spiking activity of single neurons in the
cortex can also explain a seemingly unrelated phenomenon, which is
why task-related activity is so distributed in the cortex. Distributing
task-related activity can be beneficial for several reasons, such as
robustness to loss of neurons or synapses or an increase in coding
capabilities71. Future research directions could focus on the compu-
tational benefits of cortical networks operating in the balanced regime
in the lens of distributing task-related activity.

To conclude, our work shows that while large changes in network
dynamics canbeobservedduring learning, attributing such changes to
synaptic reorganization between neurons must be taken with care. In
strongly coupled networks that operate in the balanced regime, in
which the motor cortex might operate, widespread changes in neu-
ronal activity can be mainly a result of distributing learned activity
from a dedicated subset of neurons to the rest of the network through
task-independent strong synapses.

Methods
Data acquisition was performed using SpikeGL (https://github.com/
cculianu/SpikeGL) and Wavesurfer (https://www.janelia.org/open-
science/wavesurfer) software (see21).

Data analysis
Principal component analysis of population rate dynamics. To
obtain the PSTHs of neurons in a trained network, we repeated the
simulation of a trained network 400 times starting at random initial
conditions and applied the same external stimulus to trigger the
trained activity patterns. Subsequently, for each neuron, the spikes
emitted over multiple trials were placed in 20ms time bins, which
ranged over theTtarget long trainingwindow, and averaged across trials
to compute the instantaneous spike rates.

Given the PSTHs, r1, . . . ,rM 2 RT , of a population of M neurons,
we subtracted themean rate of every neuron from its PSTH to remove
differences in the baseline firing rates. In the following, we use the
same notation ri to refer to the mean subtracted PSTH of neuron i.
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We then performed principal component analysis on the popu-
lation rate dynamics R = (r1,…, rM), which is a T ×M matrix, to obtain
the principal components v1, . . . ,vT 2 RT and the principal values
λ1,…, λT. This is equivalent to finding the eigenvectors and eigenvalues
of the covariance matrix, RR⊤. The variance explained by the kth prin-
cipal component was λ2k=

P
iλ

2
i .

The same procedure was applied to all the principal component
analyses performed in this study.

Shared variance analysis. We identified population vectors along
which the population activities of inhibitory model neurons and fast-
spiking ALM neurons co-varied maximally40. We also quantified the
fraction of variance that can be explained by the projected population-
averaged activities (Fig. 3).

We first computed the correlation Cij = corr(fi, gj), which an
M1 ×M2 matrix, between the PSTH’s of inhibitory model neurons f i 2
RT ,1≤ i≤M1 and fast-spiking ALM neurons gj 2 RT ,1≤ j ≤M2 where
M1 = 2500, M2 = 306 and T = 100. Then the singular-value decomposi-
tion C =UΣV of the correlation matrix was performed, where U is an
M1 ×M1 matrix and V is an M2 ×M2 matrix, to obtain the left singular
vectors U = ðu1, . . . ,uM1

Þ with uk 2 RM1 and the right singular vectors
V= ðv1, . . . ,vM2

Þ with vk 2 RM2 .
To obtain the population-averaged activity along the singular

vectors, the matrices of population rate, i.e., F= ðf 1, . . . ,fM1
Þ 2 RT ×M1

for the inhibitory model neurons and G= ðg1, . . . ,gM2
Þ 2 RT ×M2 for the

fast-spiking ALM neurons, were projected to the corresponding kth

singular vectors uk and vk, respectively, to obtain the kth shared com-
ponents, αk =Fuk 2 RT and βk =Gvk 2 RT . The variance explained by
the kth shared component was defined as ∥αk∥2/∑k∥αk∥2 and ∥βk∥2/
∑k∥βk∥2, respectively.

Defining the choice and homogeneous modes. Trial-averaged spike
rate of a neuron i, ri(t, k), were calculated for each trial, k, using 1ms bin
size and were filtered with a 200ms boxcar filter.

We then analyzed the population dynamics of N simultaneously
recorded neurons in a session. During each trial, the population
activity of these neurons, r(t, k), drew a trajectory in theN-dimensional
activity space. We identified the choice mode as N × 1 vector of trial-
averaged spike rate differences of N neurons during trials with lick-
right and lick-left outcomes, averaged within a 1sec window at the end
of the delay epoch, before the go cue21:

C=
1ffiffiffiffi

N
p

k hrRit,k � hrLit,k k
hrRit,k � hrLit,k

� �
ð1Þ

with the L2 norm, ∥x∥, and 〈x〉t,k which is averaging over trials and
time. The

ffiffiffiffi
N

p
termwas introduced to ensure that the projection of the

neural activity is independent of the number of recorded neurons and
for consistencywith the homogeneousmode below. Projections of the
neural activity along the choice mode were:

PCðt,kÞ=C � rðt,kÞ ð2Þ

Similarly, the projection over the homogeneous mode was given by
PHðt,kÞ= 1

N 1 � rðt,kÞ, with 1 being a vector of ones.
If an individual neuronwasnot recordedduring aparticular trial, its

weight in equation (2) was set to zero, and for the analysis we selected
trials with at least 10 simultaneously recorded neurons.

Response of themodes to perturbations. To assess the impact of vS1
photostimulation during the delay on the homogeneous and choice
modes in the ALM, we computed for each session the single-trial
projections on each of the modes, PC(t, k) and PH(t, k), for correct lick-
right trials both with and without the photostimulation. The trial-
averaged activity was plotted for one example session in Fig. 6E,I along

with the SD, after subtracting the average projection over the first
0.5 seconds of the delay period.

We used a statistical hypothesis test (Student t-test) to estimate
the decay time back to the non-perturbed trajectories for the projec-
tions on the modes. Specifically, for each time bin we tested the null
hypothesis that the perturbed and unperturbed trials were from
the same distribution and rejected the null hypothesis with a
p-value < 0.05 (orange dots in Fig. 6E,I). We only analyzed sessions in
which the photostimulation resulted in a significant change in at least
10% of the time points during the photostimulation period ([− 1.6, 1.2]
sec, 13/17 sessions). To calculate the decay time, we then used the last
significant time bin within the time window of [ − 1.2, 0]sec for which
the derivative was smaller than 10ms (dashed red lines in Fig. 6E,I). The
perturbations in 2/13 sessionswerebiased andwerenot included in the
analysis, leaving 11 sessions of simultaneously recorded neurons.

To calculate the decay time over all sessions (Fig. 6D)we averaged
the projection in each of the 11 analyzed sessions and calculated the
difference in the projection between the perturbed and unperturbed
trials (Δ projection). We then took the absolute value and averaged
over all sessions (Fig. 6D,mean ± SEM). Finally, we estimated the decay
rate by an exponential fit.

Wenote that in the experiments these estimates should be thought
of as an upper bound for the real decay timescale due to multiple
reasons. First, different sessions in the data might originate from
recordings in differentmice. Second, evenwithin the samemouse there
might be differences in the dynamical state of the network, which will
affect the firing rate and its decay back to baseline. Third, in contrast to
the model, it is hard to control the optogenetic perturbation in the
experiment. Indeed, our ability to verify that we activated exactly
the same group of neurons in vS1 during the perturbation, and with the
same amplitude, is limited (see also the paragraph above).

Spiking neural networks
Network connectivity. The spiking neural network consisted of ran-
domly connected NE excitatory and NI inhibitory neurons. The recur-
rent synapses consisted of static weights J that remained constant
throughout training and plastic weights W that were modified by the
training algorithm. The static synapses connected neuron j in popu-
lation β to neuron i in population α with probability pαβ =Kαβ/Nβ and

synaptic weight �Jαβ=
ffiffiffiffiffiffiffiffi
Kαβ

q
, where Kαβ is the average number of static

connections from population β to α:

PrðJαβij ≠0Þ=
Kαβ

Nβ
: ð3Þ

The strength of plastic synapses, �W αβ=
ffiffiffiffiffiffiffiffi
Kαβ

q
, was of the same

order as the static weights. However, the plastic synapses connected
neurons with a smaller probability:

PrðWαβ
ij ≠0Þ=

Lαβ
Nβ

with Lαβ = c
ffiffiffiffiffiffiffiffi
Kαβ

q
ð4Þ

which made the plastic synapses much sparser than the static
synapses70. Here, c is an order 1 parameter that depends on
training setup.

The static and plastic connections were non-overlapping in that
any two neurons in the network can have only one type of synapse.

Jαβij W
αβ
ij =0: ð5Þ

Keeping them disjoint allowed us to maintain the initial network
dynamics generated by the static synapses and, subsequently, intro-
duce trained activity to the initial dynamics by modifying the plastic
synapses.
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The static recurrent synapses were strong in that the coupling
strength between two connected neurons scaled as 1ffiffiffiffiffiffi

Kαβ

p , while the

average number of synaptic inputs scaled as Kαβ. This is in contrast to
the weak, 1/Kαβ, coupling we considered in Fig. S9. As a result of this
strong scaling, the excitatory (uE

bal) and inhibitory (uI
bal) synaptic

inputs to a neuron from static synapses increased as
ffiffiffiffiffiffiffiffi
Kαβ

q
, thus were

much larger than the spike-threshold for a largeKαβ. However, uE
bal and

uI
bal were dynamically canceled, and the sum (ubal) was balanced to be

around the spike-threshold (ref. 23, Fig. 1B, middle).
In contrast to the static synapses, each trained neuron received

only about
ffiffiffiffiffiffiffiffi
Kαβ

q
plastic synapses. This made the plastic synapses

much sparser than the sparse static EI connectivity (e.g., with
K = 1000 static synapses, there are of the order of

ffiffiffiffi
K

p
≈30 plastic

synapses per neuron). Consequently, the EI plastic inputs
(uE

plas, uI
plas) of the initial network were independent of Kαβ and

substantially weaker than the EI balanced inputs (uE
bal ,u

I
bal) for a large

Kαβ. After training the plastic synapses, the total synaptic input
(u = ubal + uplas) to each trained neuron was able to follow the target
patterns (Fig. 1B, left; Fig. 1C), while the plastic input (uplas) stayed
around the spike-threshold (Fig. 1B, right). With this scaling of
plastic synapses, training was robust to variations in the number of

synaptic connections, Kαβ. Network trainings were successful even
when Kαβ was increased, such that the excitatory and inhibitory
balanced inputs were tens of orders of magnitude larger than the
plastic inputs (Fig. S1). All network parameters used in the figures
can be found in Table 1.

Network dynamics. We used integrate-and-fire neuron to model the
membrane potential dynamics of the i’th neuron:

τm _vαi = � vαi +u
α
i +X

α
i ð6Þ

where a spike is emitted and the membrane potential is reset to vreset
when the membrane potential crosses the spike-threshold vthr.

Here, uα
i is the total synaptic input to neuron i in population α that

can be divided into static and plastic inputs incoming through the
static and plastic synapses, respectively:

uα
i =u

α
bal,i + u

α
plas,i: ð7Þ

Xα
i is the total external input that can be divided into constant external

input, plastic external input, and the stimulus:

Xα
i =X

α
bal,i +X

α
plas,i +X

α
stim,i: ð8Þ

Xα
bal,i is a constant input associatedwith the initial balanced network. It

scales with the number of connections, i.e., proportional to
ffiffiffiffiffiffiffiffi
Kαβ

q
,

determines the firing rate of the initial network and stays unchanged23.
Xα
plas,i is plastic input provided to trained neurons in the recurrent

network from external neurons that emit stochastic spikes with pre-
determined rate patterns. The synaptic weights from the external
neurons to the trained neurons were modified by the training
algorithm. Xα

stim,i is the pre-determined stimulus, generated indepen-
dently from the Ornstein-Uhlenbeck process for each neuron, and
injected to all neurons in the network to trigger the learned responses
in the trained neurons (see details in Network training scheme below).

The synaptic activity was modeled by instantaneous jump of the
synaptic input due to presynaptic neuron’s spike, followed by expo-
nential decay. Since the static and plastic synapses did not overlap, we
separated the total synaptic input into static and plastic components
as mentioned above:

τbal _u
α
bal,i = �uα

bal,i +
P

β2fE,Ig

P
j2β

Jαβij
P
tj
k
<t

δðt � tjkÞ

τplas _u
α
plas,i = �uα

plas,i +
P

β2fE,Ig

P
j2β

W αβ
ij

P
tj
k
<t

δðt � tjkÞ:
ð9Þ

with τbal synaptic integration time constant of the static inputs and τplas
the synaptic integration time constant of the plastic inputs. Alter-
natively, the synaptic activity can be expressed as a weighted sum of
filtered spike trains because the synaptic variable equations (equation
(9)) are linear in J and W:

uα
bal,i =

P
β,j

Jαβij r
β
bal,j

uα
plas,i =

P
β,j

Wαβ
ij r

β
plas,j

ð10Þ

where

τbal _r
β
bal,i = �rβbal,i +

P
tik<t

δðt � tikÞ

τplas _r
β
plas,i = �rβplas,i +

P
tik<t

δðt � tikÞ
ð11Þ

describe the dynamics of synaptically filtered spike trains.

Table 1 | Default simulation and training parameters

Neuron parameters Values

δt simulation time step 0.1 ms

τm membrane time constant 10 ms

vthr spike threshold 1

vreset voltage reset after spike 0

Network parameters

N number of neurons 30000

NE number of excitatory neurons N/2

NI number of inhibitory neurons N/2

p connection probability 0.2

Synaptic parameters

τbal static synaptic time constant 3 ms

τplas plastic synaptic time constant 150 ms

K average number of static synapses to a neuron pN

KE average number of excitatory static synapses to a neuron pNE

KI average number of inhibitory static synapses to a neuron pNI

L number of plastic synapses to a neuron see Table 2

JE excitatory synaptic weight 2:0=
ffiffiffiffiffiffi
KE

p
JI inhibitory synaptic weight �2:0=

ffiffiffiffiffi
KI

p
X external input 0:08

ffiffiffiffiffi
KI

p
JEE E to E static synaptic weight γEJE

JIE E to I static synaptic weight JE

JEI I to E static synaptic weight γIJI

JII I to I static synaptic weight JI

XE external input to excitatory neurons γXX

XI external input to inhibitory neurons X

γE relative strength of WEE toWIE 0.15

γI relative strength of WEI to WII 0.75

γX relative strength of XE to XI 1.5

Training parameters

λ penalty for L2-regularization 0.05

μ penalty for ROWSUM-regularization 8.0

Niter number of training iterations 200

Ttarget length of target patterns 2 sec

Any differences from the above parameters are described in Table 2.
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Each external neuron emitted spikes stochastically at a pre-
defined rate that changed over time. The rate patterns, followedby the
external neurons, were randomly generated from an Ornstein-
Ulenbeck process with mean rate of 5 Hz. The synaptically filtered
external spikes were weighted by plastic synapses WX and injected to
trained neurons:

Xα
plas,i =

X
j

WX
ij r

X
j ð12Þ

where

τplas _r
X
plas,i = � rXplas,i +

X
tik<t

δðt � tikÞ ð13Þ

Similarly, the external stimulus Xstim,i applied to each neuron i in the
network to trigger the learned response is generated independently
from the Ornstein-Ulenbeck process.

In the following section, we will use the linearity of W,WX in
equations (10) and (12) to derive the training algorithm that modifies
plastic synaptic weights.

Training recurrent neural networks in the balanced regime using
sparse plastic synapses. From a technical point of view, the choice to
train very sparse plastic synapses made the plastic inputs to be on the
order of the spike-threshold (i.e. order one, independent of the num-
ber of connections). This choice of training only a sparse number of
plastic weights enables training the network without affecting the
mean firing rates of the excitatory and inhibitory populations. It thus
allows the network to generate non-linear dynamics in a macroscopic
number of neurons.

To show this, we write the mean input of each excitatory and
inhibitory neuron in the absence of the transient external stimulus,
Xα
stim,i:

huα
i i+Xα

i = huα
bal,ii+Xα

bal,i

n o
+ huα

plas,ii +Xα
plas,i ð14Þ

The terms in the curly brackets in the right hand side of the above
equation are:

huα
bal,ii+Xα

bal,i

n o
=

X
j

JαEij r
E
j +

X
j

JαIij r
I
j +X

α
bal,i

( )
ð15Þ

They consist of a large number of uncorrelated random variables, and
thus in the limit of a large number of presynaptic inputs they converge
to a Gaussian distribution with mean:

μα =
ffiffiffiffi
K

p
½�JαErE ��JαI rI + �Xbal,α � ð16Þ

and an order one variance that needs to be calculated self-consistently.
At thebalanced regime, themean input of the excitatory and inhibitory
populations is Oð1Þ as long as:

�JEErE � �JEI rI + �Xbal,E≈0
�JIErE ��JII rI + �Xbal,I≈0

ð17Þ

These two linear equations, termed the ‘balanced equations’44, 72 only
involves the strength of the static connections, �Jαβ, and the external
inputs, �Xbal,α . The mean firing rates of the excitatory and inhibitory
populations are thus linear in the external inputs, and are independent
of the plastic synapses.

We constructed the plastic synapses in a way that each neuron
receives only an order of

ffiffiffiffi
K

p
synapses, with an average strength of

Oð1=
ffiffiffiffi
K

p
Þ. This average strength is kept throughout the training thanks

to the ROWSUM regularization (see below). The plastic inputs,

huα
plas,ii+Xα

plas,i are thus on the order of the threshold. As they are
smaller than the mean excitatory and inhibitory balanced inputs by a
factor of 1=

ffiffiffiffi
K

p
, they do not enter into the balanced equations, and

cannot affect the mean rates of the excitatory and inhibitory popula-
tions. Yet, they can be trained to drive the neurons to generate non-
trivial dynamics, and lead to non-linear dynamics in sub-populations of
neurons, while keeping the population rates linear in the average
external inputs, �Xbal,α

Alternatively, if the plastic synapses were more abundant in the
network, e.g., on the order of the number of static connections, they
could interfere with the the ability of the strong inhibition to balance
the strong excitation for each neuron in the network. Such inter-
ference significantly limits the ability to train the spiking networks.
Training only a sparse number of plastic connections, on the order offfiffiffiffi
K

p
, thus allows to train the networks to perform non-linear compu-

tations, while keeping it in the balanced regime.

Network training scheme
Overview. Prior to training the network, neurons were connected by
the recurrent static synapses and emitted spikes asynchronously at
constant rates. This asynchronous state of the initial network has been
investigated extensively in previous studies23,25,72.

Starting from this asynchronous state, the goal of training was to
produce structured spiking rate patterns in a subset of neurons selected
from the network. Specifically, our training scheme modified the
recurrent and external plastic synapses projecting to the selected
neurons, so that they generated target activity patternswhen evokedby
a brief external stimulus. To this end, we first selectedM neurons to be
trained from a network consisting of N neurons, and then prepared M
target functions f1(t),…, fM(t) defined on a time interval t∈ [0, Ttarget] to
be learned by the selected neurons. The plastic synapses projecting to
each selected neuron i were then modified by the training algorithm
such that the total synaptic input ui(t) to neuron i followed the target
pattern fi(t) on the time interval t∈ [0, Ttarget] after the training.

Initialization of plastic synapses. For each trained neuron, we ran-
domly selected L excitatory and L inhibitory presynaptic neurons that
projected plastic synapses to the trained neuron. When the excitatory
subpopulation was trained, the presynaptic excitatory neurons were
sampled from other trained excitatory neurons while the presynaptic
inhibitory neurons were sampled from the entire inhibitory population.
Similarly, when the inhibitory subpopulation was trained, the pre-
synaptic inhibitory neuronswere sampled fromother trained inhibitory
neurons while the presynaptic excitatory neurons were sampled from
the entire excitatory population. The untrained neurons did not receive
any plastic synapses. Each trained neuron also received inputs from all
the LX external neurons. The plastic weights from the external neurons
to each trained neuron were trained by the learning algorithm.

While our training algorithm requires only an order of square root
of the pre-existing static connections to be plastic, the specific number
of plastic connections may vary with the complexity of the trained
neural activity. Indeed, almost three times more plastic synapses were
needed to train the neurons to reproduce ALM activity, in which six
PCs explained about 80% of the variance, compared to the number of
plastic synapses needed to train sine waves, in which two PCs
explained the same amount of the variance (Table 2). It is beyond the
scope of this paper to determine exactly how the prefactor of the
square root term depends on the complexity of the neural activity.
However, previous studies suggest that the number of plastic con-
nections might depend on the dimensionality (i.e., decay rate of the
singular values)73 or decorrelation time of the trained neural activity37.

In addition to having sparse plastic synapses, we modeled their
dynamics using slower integration time constant with respect to the
abundant non-plastic synapses. The timescales of the non-plastic
synapses were on the order τbal = 3ms, consistent with timescales of
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synapses consistingof AMPAandGABA receptors. In contrast, the time
scale of the plastic synapse was significantly slower (τplas = 150ms). In a
previous work we showed that the time scale of the plastic synapses
should be faster than or on the order of the decorrelation time scale of
the target PSTHs. However, the slower τplas is, the sparser the plastic
weights can be37. In this sense, it is better to train networks with
synapses that has a slow ‘NMDA component’, adding another com-
putational advantage to synapses consisting of NMDA receptors in
learning processes.

Cost function. Each trained neuron i had its own private cost function
defined by

Ci½wrec
i ,wX

i �=
1
2

Z Ttarget

0
ðf iðtÞ � uiðtÞ � XiðtÞÞ2dt +

1
2
Reg½wrec

i ,wX
i � ð18Þ

wherewrec
i = ðWii1

, . . . ,WiiL
Þ is a vector of recurrent plastic synapses to

neuron i from other presynaptic neurons in the network indexed by
i1,…, iL. Similarly, wX

i = ðWX
i1, . . . ,W

X
iLX

Þ is vector of plastic synapses to
neuron i from the external neurons. The regularization of plastic
weights Reg½wi,w

X
i � consisted of two terms

Reg½wrec
i ,wX

i �= λðk wrec
i k2 + k wX

i k2Þ+μ
X

α2fE,Ig
ðwrec

i � 1αi Þ
2
: ð19Þ

Thefirst term is a ridge regression that evaluates the L2-normof the
plastic weights. It allowed us to uniquely solve for the plastic weights in
the training algorithm described below, and the hyperparameter λ
controls the learning rate, i.e., the size of synaptic weight updates. The
second term is called ROWSUM regularization where the elements of
the vector 1αi = ðiα1 , . . . ,iαL Þ are defined to be iαk = 1 if the presynaptic
neuron ik belongs to population α and 0 otherwise60. The inner pro-
ductswrec

i � 1Ei andwrec
i � 1Ii are the aggregate plastic weights to neuron i

from the excitatory and inhibitory populations, respectively. Including
the ROWSUM regularization allowed us to keep the aggregate excita-
tory and inhibitory plastic weights fixed throughout the training. When
the plastic input to a trained neuron is initialized to be around
spike-threshold, the ROWSUM regularization makes it possible to keep

the plastic input to be about the same magnitude in the trained net-
work. Although the ROWSUM regularization term could be further
developed, as studied in48, to impose Dale’s law in networks exhibiting
wide firing rate distributions, the trained plastic weights in our network
were allowed to flip signs, hence violate Dale’s law in the plastic
synapses but not in the initial EI network synapses (see Fig. S8A for the
distribution of trained plastic weights).

Training algorithm. We derived a synaptic update rule that modified
the plastic synapses to learn the target activities. The learning rule was
based on recursive least squares algorithm (RLS) that was previously
applied to train the read-outs to perform tasks35, 36 and the individual
neurons to generate target activity patterns19,37,45. The derivation pre-
sented here closely follows previous papers37,60. For notational sim-
plicity, we dropped the index i in wi and other variables, e.g., fi, ui. We
note that the same synaptic update rule was applied to all the trained
neurons.

The gradient of the cost function with respect to the vector of full
plastic weights w = (wrec,wX) was

∇wC =
1
2
∇w

X
t

ðf t � ubal,t � uplas,t � Xbal � Xplas,tÞ2 + λ kwk2 +μ
X
α2E,I

ðw � 1αÞ2
" #

=
X
t

ð�f t +ubal,t +Xbal + r
0
twÞrt + λw+μ

X
α2E,I

1α1
0
αw:

ð20Þ

Here we substituted the expressions uplas,t =wrec ⋅ rplas,t and
Xplas,t =wX � rXplas,t in the first line to evaluate the gradient with respect
to w. In the second line, we used a condensed expression
rt = ðrplas,t , rXplas,tÞ to denote the synaptically filtered spike trains from
all plastic inputs. The vectors 1α apply only to the recurrent plastic
weights wrec and take zero elements on wX.

To derive the synaptic update rule, we computed the gradient at
two consecutive time points

0=∇wn
C =

Xn
t = 1

ð�f t +ubal,t +Xbal + r
0
twnÞrt + λwn +μ

X
α2E,I

1α1
0
αwn ð21Þ

Table 2 | The number of total neurons, trained neurons and plastic synapses in the simulated networks

Figure 2 Figure 4 Figures 1 & 5
Target functions Neural PSTH Synthetic PSTH Sine function

Neurons

N # neurons 5 ⋅ 103 3 ⋅ 104 3 ⋅ 104

Ntrained # trained neurons 1824 3 ⋅ 103 to 1.5 ⋅ 104 3 ⋅ 104 & 1.5 ⋅ 104

Static synapses to a neuron

p conn prob of static synapses 0.2 0.2 0.213

K =pN # static synapses to a neuron 1000 6000 6400

Plastic synaptic weights to a trained neuron

JE, JI see Table 1

WEE E to E plastic synaptic weight 0.66JE JE 2JE

WIE E to I plastic synaptic weight 0.66JE JE 2JE

WEI I to E plastic synaptic weight 0.33JI 0.5JI JI

WII I to I plastic synaptic weight 0.33JI 0.5JI JI

Number of plastic synapses to a trained neuronffiffiffiffi
K

p
order of # plastic synapses 32 77 80

Lrec = c
ffiffiffiffi
K

p
# recurrent plastic synapses 264 440 226

Lffwd = c
ffiffiffiffi
K

p
# ffwd plastic synapses 300 200 0

L = Lrec + Lffwd # total plastic synapses 564 640 226

Sparsity of plastic synapses

L/K # plastic/# static synapses 0.564 0.106 0.035
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and

0=∇wn�1
C =

Xn�1

t = 1

ð�f t +ubal,t +Xbal + r
0
twn�1Þrt + λwn�1 +μ

X
α2E,I

1α1
0
αwn�1:

ð22Þ

Subtracting equations (21) and (22) yielded

wn =wn�1 + enPnrn
en = f n � ubal,n � Xbal �wn�1 � rn

ð23Þ

where

Pn =
Xn
t = 1

rtr
0
t + λI+μ

X
α2E,I

1α1
0
α

" #�1

for n≥ 1 ð24Þ

with the initial value

P0 = λI+μ
X
α2E,I

1α1
0
α

" #�1

: ð25Þ

To update Pn iteratively, we used the Woodbury matrix identity

ðA+UCVÞ�1 =A�1 � A�1UðC�1 +VA�1UÞ�1
VA�1 ð26Þ

whereA is invertible andN ×N,U isN × T,C is invertible and T × T andV
is T ×N matrices. Then Pn can be calculated iteratively

Pn =Pn�1 � Pn�1rnr
0
nP

n�1

1 + r0nP
n�1rn

: ð27Þ

External stimulus triggering target activity patterns. To trigger the
target activity patterns learned by the trained neurons, a brief external
stimulus (200ms long) was applied to every neuron in the network
immediately beforegenerating the activity patterns. Twodifferent sets
of stimuli were prepared to trigger the lick-left and lick-right popula-
tion responses. One set of stimuli was used during and after training to
trigger the lick-left response and the other set of stimulus was used for
the lick-right response. The stimulus Xc

stim,iðtÞ to each neuron i and trial
type c = L,Rwas generated independently from theOrnstein-Ulenbeck
process: Xc

stim,iðt + δtÞ=Xc
stim,iðtÞ+ τ�1Xc

stim,iδt + σ
ffiffiffiffiffi
δt

p
ξðtÞ where

τ = 20ms, σ = 0.2 and ξ(t) was uncorrelated Gaussian distribution with
zero mean and unit variance.

Generating sinusoidal activity patterns. For demonstrating the Sub-
set Training method (Fig. 1) and the network mechanism for spreading
trained activity (Fig. 5), neurons in the network were trained to follow
sine functionswith randomphases. Specifically, neuron i in the network
learned the target pattern f iðtÞ=a sinðωt +ϕiÞ+bi on the time interval
t= [0, 1]sec, where the amplitude a =0.5, the frequency ω = 1rad/sec
(Fig. 1) and 2rad/sec (Fig. 5), the phase ϕi was sampled from a uniform
distribution [0, 2π], and the offset biwas themean synaptic input to the
neuron in the initial balanced network prior to training.

Generating target neural trajectories. A subset of excitatory neurons
in the network learned to reproduce the PSTHs of pyramidal neurons
recorded fromALM in21. For eachpyramidal neuron, the spikes emitted
across multiple experiment trials were placed in Δt = 20ms time bins
that ranged over the Ttarget = 2 second delay period. The PSTHs were
then smoothed by a moving average over a 300ms time window
centered at each timebin.Weobtained two sets of PSTHs rL1 , . . . ,r

L
M and

rR1 , . . . ,r
R
M from M = 1824 pyramidal neurons for the lick-left and

lick-right trial types. Each PSTH rci 2 RT for neuron i and trial-type
c∈ L, R was a T = Ttarget/Δt = 100 dimensional vector defined on time
points t = [ − 2 +Δt,…, −Δt, 0]sec, where 0 is the onset of go-cue.

Next, we converted the PSTHs to target synaptic activities to be
used for training the synaptic inputs to selected neurons. For each
spike rate rcit where i = 1,…,M, c = L, R and t = − 2 +Δt,…, 0, we
obtained themeansynaptic input f cit thatneeds tobe applied to the the
leaky integrate-and-fire neuron to generate the desired spike rate. To
this end, we numerically solved the nonlinear rate equation

rcit =ϕðf cit ,σ2Þ ð28Þ

where ϕðm,σÞ= τ�1
m ½ ffiffiffiffi

π
p R Vthr�m

σ
Vreset�m

σ

dwew
2
erf cð�wÞ�

�1

is the transfer func-
tion of the leaky integrate-and-fire neuron given mean input, m, and
variance of the input, σ227,74. We obtained the synaptic fluctuation σ
from the synaptic noise in the neurons of the initial network since the
slow plastic inputs did not significantly change the fast noise
fluctuation. This conversion yielded two sets of target synaptic inputs
fL1 , . . . ,f

L
M and fR1 , . . . ,f

R
M 2 RT for M excitatory neurons to be trained.

We chose the parameters of the initial network connectivity such
that the mean rate of the excitatory and inhibitory populations in the
network was close to estimated mean rates of the ALM data (mean
excitatory ratewas4.2Hz and inhibitory ratewas 11.0Hz). To select the
subset of excitatory neurons to be trained, we compared the mean
firing rates of the neurons in the initial network with the firing rates of
pyramidal neurons and identified the excitatory neuron whose firing
rate’s was closest to the pyramidal neuron. This process was repeated
until all the pyramidal neurons were matched to the excitatory neu-
rons uniquely.

Generating target synthetic trajectories. To generate synthetic data
that shared similar statistics and low-dimensional dynamics as the
neural data, we performed PCA on the PSTHs of pyramidal ALM neu-
rons to identify the principal components v1, . . . ,vD 2 RT that
explained majority of their variance. We found that D = 9 was large
enough to explain over 95% of the variance. The same procedure was
applied to the PSTHs of the fast-spiking ALM neurons to obtain their
principal components.

We sought to construct synthetic trajectories rsynth 2 RT that
resembled the PSTHs of the pyramidal and fast-spiking ALM neurons
(Fig. S6). To this end, we expressed the synthetic trajectory rsynth as a
weighted sum of the principal components: rsynth =

PD
n= 1 c

synth
n vn. To

find the distribution of the coefficients cneuraln of the neural data, we
projected the PSTHs of pyramidal neurons onto the PCs and obtained
the empirical distribution of cneuraln = rneural � vn. Bootstrapping the
synthetic coefficients csynthn from the empirical distribution of cneuraln
was performed in two steps. First, the mean firing rate of synthetic
target was sampled from the empirical rate distribution to generate
synthetic PSTHs that had rate distribution statistically identical to the
empirical distribution (Fig. S6A,B). Next, since cneuraln depended
strongly on the mean firing rate of neurons, csynthn was bootstrapped
from a subset of cneuraln whose underlying firing rate was close to the
firing rate of synthetic target (Fig. S6C). In this way, the distributions of
the firing rates and PC loadings of the synthetic and neural data were
almost identical (Fig. S6E).

In addition, we generated the synthetic PSTHs in pairs for the lick
right and lick left trials. First, the PSTHs for the lick right and lick left
conditions were generated independently. Then, we sorted the PSTH’s
of each condition separately and paired them, to ensure the pairs had
similar level of mean firing rates. Subsequently, we added Gaussian
noisewith zeromean and standarddeviation equal to the differenceof
lick right and lick left mean firing rates, to the PSTH’s of the lick left
condition. This allowed us to introduce choice selectivity to the
synthetic PSTHs.
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The synthetic PSTHs were then converted into target synaptic
inputs following the same procedure applied to the neural PSTHs.

Initializingweakly coupled network. Here we describe how the initial
parameters of a weakly coupled network were set up to match the
population activity of ALM neurons (and the strongly coupled
balanced network). All the network parameters for the weakly coupled
network are reported in Table 3 and explained in Fig. S10. First, the
initial connections of the weakly coupled network were scaled by 1/K,
instead of the 1=

ffiffiffiffi
K

p
scaling as in the balanced network. The 1/K scaling

produced synaptic weights that averaged the spiking activity of pre-
synaptic neurons. However, with such weak coupling, the network did
not produce a log-normal firing rate distribution, whichwas needed to
pair ALM neurons with model neurons to be trained based on proxi-
mity of their mean firing rates. Therefore, each neuron i received
additional constant input, denoted by Xgaussian

i , that varied across
neurons. More specifically, the additional inputs were identical to the

normally distributed mean inputs received by neurons in the strongly
coupled balanced network. We also injected external white noise to
neurons, which, together with the additional (normally distributed)
inputs, produced log-normal firing rate distribution in the weakly
coupled network. The white noise was inject to mimic the stochastic
spiking activity of neurons in the balanced network and also produced
exponentially expansive nonlinear activation function27. Finally, a
uniform external excitatory Xweak

E (inhibitory Xweak
I ) input was applied

to all excitatory (inhibitory) neurons to adjust the mean excitatory
(inhibitory) firing rates to be close to the mean firing rate of ALM
pyramidal (fast-spiking) neurons.

Mathematical analysis of inputs to untrained neurons
In this part of the methods we use mathematical analysis to show how
random inputs from trained neurons can drive the untrained neurons
to follow the trained activity, without further training, if the network
operates in the balanced regime.

To simplify the analysis, we assumed that only the excitatory
population was trained and the inhibitory population was not. In
addition, we assumed that the target functions, fit for neuron i and
t∈ [0, Ttarget], were slower than the slow plasticity signal and
that training was perfect. In this case, we can approximate the total
synaptic input to a trained excitatory neuron using the fixed point
equation:

uE
i ðtÞ≈

X
β2fE,Ig

XNβ

j = 1

JEβij ϕðuβ
j ðtÞÞ+

X
β2fE,Ig

XNβ

j = 1

WEβ
ij ϕðuβ

j ðtÞÞ+
ffiffiffiffi
K

p
XE ð29Þ

with
ffiffiffiffi
K

p
XE the strong external input associated with the balanced

network23. The transfer function, ϕðuα
i Þ=Φðuα

i ;σαÞ, was the Riccardi
function27, 74, with σ2

E =
�J
2
EEϕE +�J

2
EIϕI . The population rate was given by

ϕα = ½hϕα
iti�, with 〈x〉 denoting the average over the time and [x] the

average over the neurons.
Similarly, the total synaptic input to an untrained neuron, which

lacked plastic connections, followed:

uI
iðtÞ≈

X
β2fE,Ig

XNβ

j = 1

JIβij ϕðuβ
j ðtÞÞ+

ffiffiffiffi
K

p
XI ð30Þ

with σ2
I =

�J
2
IEϕE +�J

2
IIϕI .

Our goal was to analyze the synaptic drive from the trained
(excitatory) neurons tountrained (inhibitory) neurons tomake specific
predictions about what aspects of the trained inputs allowed them to
spread effectively to the untrained neurons.

Statistics of random inputs from the trained neurons to an
untrained neuron. If an excitatory neuron i is successfully trained, its
firing rate closely follows the target activity fit. We used a shorthand
notation ϕα

it =ϕðuα
i ðtÞÞ and expressed the firing rate of the trained

neuron in the form ϕE
it = hϕE

iti+ δϕE
it , with the temporal modulation

δϕE
it . We next considered the singular value decomposition of the

temporal modulation:

δϕE
it =

XT
n= 1

Uin

ffiffiffiffiffi
λEn

q
Vnt ð31Þ

which is N × Tmatrix, and where U is a N ×Nmatrix of the left singular
vectors and V is T × T matrix of the right singular vectors. Here, we
considered a discretized version of time with T = Ttarget/Δt, such that

the matrices are of finite size. The values
ffiffiffiffiffi
λEn

q
are the singular values

(SVs) and λEn are the elements of the spectrumof the covariancematrix
of the trained excitatory neurons. For instance, if we choose the target

Table 3 | Network parameters used for simulating a weakly
coupled network in Figure S10

Supp. Figure S10
Target functions Same as target functions

of Fig. 2

Neurons

N,NE,NI # total, exc, inh neurons Same as param of Fig. 2

Ntrained # trained neurons

Static synapses to a neuron

p conn prob of static synapses Same as param of Fig. 2

K,KE,KI # total, exc, inh static synap-
ses to a neuron

Static synaptic weights to a trained neuron

Jweak
E weak excitatory synaptic

weight
2.0/KE

Jweak
I weak inhibitory synaptic

weight
− 2.0/KI

Jweak
EE E to E static synaptic weight γEJ

weak
E

Jweak
IE E to I static synaptic weight JweakE

Jweak
EI I to E static synaptic weight γIJ

weak
I

Jweak
II I to I static synaptic weight JweakI

γE relative strength ofWEE toWIE Same as param of Fig. 2

γI relative strength of WEI to WII

External inputs to neurons

Xweak weak external input 0.35

Xgaussian Gaussian input to neurons From an untrained
balanced network

Xweak
E external input to excitatory

neurons
1.5Xweak

Xweak
I external input to inhibitory

neurons
0.8Xweak

Plastic synaptic weights to a trained neuron

WEE E to E plastic synaptic weight Same as param of Fig. 2

WIE E to I plastic synaptic weight

WEI I to E plastic synaptic weight

WII I to I plastic synaptic weight

Number of plastic synapses to a trained neuronffiffiffiffi
K

p
order of # plastic synapses Same as param of Fig. 2

Lrec # recurrent plastic synapses

Lffwd # ffwd plastic synapses

L = Lrec + Lffwd # total plastic synapses

The synaptic weights of initial connectivity Jweak and external inputs Xweak, Xgaussian are modified
from the network parameters of Figure 2 to set up a weakly coupled initial network. See Fig-
ure S10 for further explanations of the modified parameters.
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activity to be sinusoidal functions with random phases (Fig. 5A), the
covariance matrix is stationary and the right singular vectors are the
Fourier modes (e.g., V 1t / sinðωtÞ,V 2t / cosðωtÞ).

Untrained (inhibitory) neurons do not receive plastic synapses.
Thus, the aggregate input from the trained neurons to an untrained
neuron, uIE

it , is a random summation of trained neurons’ activity. It is
given by:

uIE
it =

X
j

JIEij ϕ
E
jt = ½huIE

it i� +ΔuIE
i + δuIE

it ð32Þ

with the averagepopulation input ½huIE
it i� =

ffiffiffiffi
K

p
�JIEϕ1. The second term in

equation (32) is the quenched disorder44 and its variance is given by:

½ðΔuIE
i Þ2�=�J2IE ½hϕE

iti
2�=qIE

ð33Þ

The last term in equation (32) is the temporal modulation of the
aggregate trained input, δuIE

it =
P

JIEij δϕ
E
jt . Using equation (31), it is

given by:

δuIE
i ðtÞ=�JIE

XT
n= 1

~ain

ffiffiffiffiffi
λEn

q
Vnt : ð34Þ

where due to the Central Limit Theorem, the coefficients
~ain =

1ffiffiffi
K

p
P

jΛ
IE
ij Unj are Gaussian vectors with zero mean and unit var-

iance in the large K limit (see Prediction 1 below). Here, ΛIE
ij is the

adjacency matrix, indicating which neurons are connected, and we
assumed that the left singular vectors Uin’s are random variables with
zero mean and unit variance. Importantly, we emphasize that it is the

strong coupling (i.e., synaptic weights scale as 1=
ffiffiffiffi
K

p
) that allows the

coefficients ~ain’s to have finite variance. This is not the case if synaptic
weights are weak (see Prediction 2 below). In addition, the variance of

the coefficients of temporal modulation is �J
2
IEλ

E
n, which shows that the

SVs,
ffiffiffiffiffi
λEn

q
, determine the strength of temporal modulation (see Pre-

diction 3 below).
With this, the synaptic input to an untrained neuron from the

trained population can be written in the following form:

uIE
it =

ffiffiffiffi
K

p
�JIEϕE +

ffiffiffiffiffiffiffi
qIE

p
zEi + δu

IE
it ð35Þ

with zEi being a Gaussian random variable with zero mean and unit
variance.

For example, when the target functions are sinusoidal functions
with random phases (Figs. 1, 5) these temporal modulations are:

δuIE
it =�JIE

XT
n= 1

ffiffiffiffiffi
λEn

q
½ani cosðnωtÞ+ bni sinðnωtÞ� ð36Þ

where we replaced ~ani in equation (34) with the even and odd coeffi-
cients of the cosine and sine functions, ani, bni, respectively.

Similarly, in the case of the ALM data, the dominant right singular
vector is a ramping mode (Fig. 2E,F), i.e. V1t∝ t and the temporal
modulations are dominated by:

δuIE
it ≈ �JIE

ffiffiffiffiffi
λE1

q
~a1it ð37Þ

with ~a1i ∼N ð0,1Þ.

The recurrent untrained inputs and implications. The synaptic input
to an untrained inhibitory neuron consists of a large, Oð

ffiffiffiffi
K

p
Þ, and

positive mean drive from the excitatory neurons. The untrained
neurons will thus fire with high rates and regular spiking, unless the
network operates in the balanced regime, in which the recurrent

inhibition cancels most of this large excitatory drive23. In this case,
the untrained neuron will be driven by the temporal modulations
originating from the random summation of the activity of trained
neurons, which are of Oð1Þ due to the strong coupling. This input is
spanned by the principal components (or, equivalently, the right
singular vectors) of the trained population according to equa-
tion (34).

A similar analysis on the recurrent inputs from the untrained
inhibitory population, uII

it , needs to be done to infer the statistics of the
temporal fluctuations of the net input, δuI

it , and rates, δϕI
it , of the

untrained inhibitory neurons. This analysis needs to be done in a self-
consistent way to determine the statistics of δϕI

it
73. While this analysis

is beyond the scope of the current paper, several observations can be
made already by examining the statistics of the inputs from the trained
population.

Prediction 1. No matter what the right singular vectors (which
we refer to as the PCs in the main text) are, their coefficients are
expected to be Gaussian. This prediction is shown in Fig. 5G for
artificial target functions of sine functions with random phases, as
well as in Fig. 5H for the coefficients of the dominant ramping mode
in the neural data.

Prediction 2. The spreadof activity in the network is possible only
because the varianceof ~ait ’s in equation (34) is finite. It is a result of the
strong coupling in the network, i.e. the 1ffiffiffi

K
p scaling of the synapses,

which guarantees, due to the Central Limit Theorem, that the variance
of the aggregate input from the trainedneurons converge isfinite. This

is in contrast to the case of weak synapses (e.g., scaling of
�Jαβ
K instead of

�Jαβffiffiffi
K

p ), where the variance of ~ait converges to zero in the large K limit

(Fig. S9, no spreading of trained activity in a weakly coupled network).
Prediction 3. The strength of the transfer of the trained activity to

the untrained neurons depends on the variance of the trained popu-
lation through equation (34). As shown in Fig. 4B, in the ALM data the
variance of the temporal modulations of the inhibitory neurons is
larger than those of the excitatory neurons. This result suggests why
the fidelity of the spread improvedwhen the inhibitory populationwas
trained instead of the excitatory population. It also explains why
leading PC modes of the activity can spread better in the network, as
their corresponding SVs (

ffiffiffiffiffi
λEn

q
in equation (34)) are, by definition, lar-

ger than those of the higher mode PCs.
Prediction 4. This framework provides additional insights into

how excitatory neurons trained to be choice-selective can impart the
learned selectivity to the untrained inhibitory neurons through
nonspecific, strong synaptic connections (see Fig. 3E). To show this,
one can estimate the statistics of the difference in the input to an
untrained inhibitory neuron from the trained population for the lick-
right and lick-left trials. For instance, if we consider the target func-
tions to be defined by the dominant ramping mode that captures
over 70% of the variance (Fig. 2E), the relevant basis function would
be V1t∝ t for t∈ [0, Ttarget], and the selectivity of the trained inputs
(SIE) yields

SIEi =u
IE,right
it � uIE,lef t

it ≈AΔzi +BΔ~a1it ð38Þ

where A and B determine the variance in the baseline inputs and
ramping rates, respectively. From equation (35), the quenched dis-
order yields Gaussian variables Δzi = z

E,right
i � zE,lef ti , with a finite var-

iance A2. From equation (37), the temporal modulation yields a
Gaussian variablesΔ~a1i = ~aright

1i � ~alef t
1i , with a finite varianceB2. Because

Δzi and Δ~a1i are random variables with finite variances, the trained
inputs develop choice selectivity, which can then elicit choice selec-
tivity in the untrained inhibitory neurons (Fig. 3D). The good agree-
ment of the distribution of choice-selectivity in the untrained neurons
in the model and the putative fast-spiking neurons in the neural data
(Fig. 3D) is consistent with this prediction.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Spike recording data in NWB format are available for download at
https://dandiarchive.org/dandiset/000060/draft. Source data are
provided with this paper.

Code availability
The Julia code for training spiking neural network is available at https://
github.com/SpikingNetwork/distributedActivity75.
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