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Abstract  

Neural representations of information are shaped by local network interactions. Previous studies linking 
neural coding and cortical connectivity focused on stimulus selectivity in the sensory cortex 1–4. Here we study 
neural activity in the motor cortex during naturalistic behavior in which mice gathered rewards with 
multidirectional tongue reaching. This behavior does not require training and thus allowed us to probe neural 
coding and connectivity in motor cortex before its activity is shaped by learning a specific task. Neurons 
typically responded during and after reaching movements and exhibited conjunctive tuning to target location 
and reward outcome. We used an all-optical 5,4,6,7 method for large-scale causal functional connectivity 
mapping in vivo. Mapping connectivity between > 20,000,000 excitatory neuronal pairs revealed fine-scale 
columnar architecture in layer 2/3 of the motor cortex. Neurons displayed local (< 100 µm) like-to-like 
connectivity according to target-location tuning, and inhibition over longer spatial scales. Connectivity 
patterns comprised a continuum, with abundant weakly connected neurons and sparse strongly connected 
neurons that function as network hubs. Hub neurons were weakly tuned to target-location and reward-
outcome but strongly influenced neighboring neurons. This network of neurons, encoding location and 
outcome of movements to different motor goals, may be a general substrate for rapid learning of complex, 
goal-directed behaviors. 

 

Introduction  

A fundamental challenge in brain research is understanding how connections between neurons shape the activity 
patterns underlying neural computation and behavior. During behavior, intermingled cortical neurons exhibit 
complex and diverse dynamics  8–14,6,15. Each neuron receives inputs from hundreds of local neurons 16,17 and long-
range inputs 18–20, and the strengths of these inputs can be modulated in vivo 21,22,14,23,24. Therefore, understanding the 
relationship between connectivity and activity requires measuring behavior-related dynamics of individual neurons 
and mapping connectivity between the same neurons in vivo. 

The motor cortex plays a central role in orchestrating goal-directed movements 25, and its neurons encode 
various movement parameters, including target location, muscle activation, effector velocity, and others. Motor 
cortex function has been studied in expert animals, trained to perform specific behavioral tasks, for example, skilled 
eye 8, arm 26,10,9,12, or tongue movements  27,11,15. However, motor cortex activity changes profoundly during learning 
to support skilled movements 28,29,12,30. We know relatively little about motor cortex activity before the network is 
shaped by task-specific learning over many trials.  
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To study neural coding in the motor cortex before learning reshaped neural dynamics and the underlying 
connectivity, we developed a naturalistic behavior that does not require training, in which mice gathered reward in 
one of many locations with multidirectional tongue reaching. We focused on the anterior lateral motor cortex (ALM) 
– an area critical for the planning and execution of sensory-guided licking in mice 11,31,13,6,14,32,33. Cellular calcium
imaging revealed ALM neurons with exquisite tuning to target-location and reward-outcome. We used all-optical
methods to measure the influence of individual neurons on activity in other neurons (‘causal connectivity’) 5,4,6,7.
These causal connectivity maps uncovered sparse, highly connected hub neurons embedded within a fine-scale
columnar architecture with like-to-like connectivity between target-location neurons.

Results 

Neural correlates of multidirectional tongue-reaching 

Head-fixed mice were presented with a port (target) that they could lick for a water reward. On each trial, the target 
was presented at one out of multiple (9, 16, or 25) possible locations in front of the mouse face (Fig. 1a). The target 
was moved outside the mouse’s reach between trials. Mice quickly became engaged in the task and reached for water 
rewards with their tongue (Fig. 1b, c), typically within the first behavioral session, and performed hundreds of trials 
per session (Extended Data Fig. 1).  

We measured neural activity using volumetric calcium imaging of excitatory neurons in layer 2/3 of ALM 
(Fig. 1d-e) in mice expressing the calcium indicator GCaMP6s 6,34 (Methods). In all analyses, we refer to the 
deconvolved spike rate 35,36 as ‘activity’ (Fig. 1e; ΔF/F, green; deconvolved spike trains, black). Out of 104,333 
imaged neurons, 86.6% (90,336 neurons) showed significant task-related activity modulation at different times 
during the trials (Fig. 1f; ‘temporal tuning’; Extended Data Fig. 2a). Similar to previous measurements in the motor 
cortex of untrained mice 29,12 and in contrast to trained animals 8,26,29,12,11,31,33, neural activity in most neurons peaked 
after movement onset, sometimes seconds later (Fig. 1g). 

Neurons carried information about target location (47.7 %), with elevated activity for particular target 
locations (Fig. 1h-i, ‘location tuning’). Most neurons had unimodal tuning – with a single target location associated 
with a peak of activity (Fig. 1j; ‘number of peaks’; Methods), with peaks ranging from broad to narrow (Extended 
Data Fig. 2b-c). Across neurons, peaks of activity spanned the entire range of target locations but were biased 
towards the upper corners of the grid (Fig. 1k). Notably, ALM neurons displayed tuning from the first day of behavior 
(Extended Data Fig. 2d), indicating that target location tuning reflects neural coding for naturalistic goal-directed 
reaching. 

Location-tuned neurons were active at specific times during the behavior (Fig. 1h,l; 88.6% of location tuned 
neurons had temporal tuning), and temporal and location tuning were reliable across trials (Extended Data Fig. 2e-
h). Location-tuned neurons had similar temporal tuning across all target locations (Fig. 1m), suggesting conjunctive 
encoding of location and response time. The peak-response times of different location-tuned neurons spanned the 
entire duration of the trial (Extended Data Fig. 2i), but this distribution was not uniform. Specifically, 37.3% of 
location-tuned neurons responded within one second after the first tongue-target contact, consistent with movement-
related activity. Interestingly, almost ~30% of these neurons responded much later (2-6 s after first contact; typical 
licking duration was <2 s, Extended Data Fig. 1b), thus carrying information about the target location after the 
movement ended.  

We probed the spatial organization of neurons as a function of their combined temporal and location tuning 
(Methods; the results were similar when location and temporal tunings were analyzed independently Extended Data 
Fig. 2j,k). Neurons with different tuning appeared intermingled on the scale of > 250 µm (Fig. 1n, left). However, 
similarly tuned neurons were likelier to be near each other on smaller spatial scales (Fig. 1n, left). This similarity in 
tuning decayed faster laterally than axially (dorsal-ventral) (Fig. 1n, right), indicating that neurons with similar tuning 
were organized in columns.  
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Fig. 1 | Neural activity in ALM during tongue-reaching.   a, Schematic showing a grid of possible target locations. The mouse 
licks the target (spout) for a water reward. b, The trial begins with the target ascending to a reachable location. Tongue (brown) and 
target (blue) trajectories are shown for a single trial; cyan circles indicate tongue contact with the target. c, 2-D views of tongue 
trajectories (brown) towards two different target locations (blue) in two trials. Doral-ventral (D-V), anterior-posterior (A-P), and 
medial-lateral (M-L) projections are shown. d, Volumetric calcium imaging showing four planes imaged in ALM layer 2/3 across 120 
µm depth. e, ΔF/F traces (green) and deconvolved spike trains (black) from four example cells (right, red delineates individual cells) 
imaged in different planes; scalebar, 10µm.  f, Temporal tuning of four example cells, averaged across trials. g, Bottom, neural activity 
of all neurons with significant temporal tuning; each row corresponds to the trial-averaged response of one neuron (of 90,336). Top, 
preferred response time of all neurons. h, Location-temporal tuning of four example cells; traces show trial-averaged responses in each 
target location. i, Target location tuning of 100 simultaneously imaged cells. j-k, Distribution of number of peaks (j) and peak locations 
(k) in location maps of location-tuned neurons. l, Proportions of neurons with temporal and locational tuning out of all imaged cells
in ALM. m, Similarity in temporal tuning across different target locations, for location-tuned neurons. n, Tuning similarity (of location-
temporal tuning; Methods) between pairs of neurons as a function of their anatomical distance. Data in f-h is displayed as mean ±
s.e.m. across trials. Data in n is displayed as mean ± s.e.m. across sessions.

Internal monitoring of action outcomes is fundamental for goal-directed behavior and learning 37–42. We next 
asked whether ALM neurons carry information about the outcome of tongue-reaching to different target locations. 
We randomly increased or omitted rewards on 20% of trials (Fig. 2a). Many neurons were significantly modulated 
by reward increase (19.5%) or omission (10.0% of neurons). Some neurons increased their response following reward 
increase or omission (Fig. 2b, cell 1-3,6), whereas others suppressed their response (Fig. 2b, cell 4-5). This ‘reward-
outcome tuning’ was not explained by differences in licking for different reward sizes (Extended Data Fig. 3). 
Overall, 13.8 % of ALM neurons showed conjunctive tuning to target location and reward outcome (Fig. 2c-d).  

The fraction of location-tuned neurons was higher among neurons up-modulated by reward increase (Fig. 
2e) or among neurons suppressed by reward omission (Fig. 2f), implying that the activity of location-tuned neurons 
tends to increase with more rewarding (positive) outcomes. In most neurons with conjunctive tuning (location × 
reward-outcome), the reward outcome modulated the amplitude but not the shape of the location tuning (measured 
by the correlations in location tuning and the peak width; Fig. 2g-h), suggesting that reward-related information 
acted as a gain modulation of location tuning. Notably, in a few cells (1% < of total cells), which did not display 
location tuning under regular reward conditions, sharp location tuning ‘emerged’ upon reward increase (Fig. 2c, cell 
6). Thus, as a population, ALM neurons encoded the consequence of movements towards different target locations.  
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Fig. 2 | Conjunctive tuning to target location and reward-outcome. a, Reward was randomly increased or omitted on 20% 
of the trials. b, Temporal tuning of six examples cells that are modulated by reward outcome, averaged across trials with regular reward 
(blue), reward increase (orange), or reward omission (green).  c, Target location tuning of three example cells with reward outcome 
modulation. Cells 1, 2, 6 are the same cells shown in b. d, Proportions of neurons with reward-outcome and/or location tuning in ALM. 
e-f, Percentage of neurons (left y-axis) with different levels of reward modulation, in neurons with modulation by reward-increase (e)
or reward omission (f). Percentage of location-tuned neurons (right y-axis) among neurons with different levels of reward-modulation.
g-h Similarities in location tuning shape (g) and peak width (h) across different reward conditions, in neurons with conjunctive tuning
to location and reward outcome. Data in b-c is displayed as mean ± s.e.m. across trials.

Optical mapping of causal connectivity 

Anatomical clustering of neurons with similar tuning (Fig. 1n) can arise from local connectivity 27,2 . To test the 
relationship between network connectivity and the tuning of individual ALM neurons during behavior, we developed 
a method for rapid measurement of causal connectivity between excitatory neurons 4. Imaged neurons were randomly 
selected for two-photon photostimulation (one target at a time) while evoked responses (suprathreshold; not 
necessarily monosynaptic) were measured in other excitatory neurons (Fig. 3a; Methods).  For two-photon 
photostimulation, we used the light-activated soma-targeted (ST) cation channel ChrimsonR 43. Because motor cortex 
connectivity is directed from superficial layers to deeper layers 44, we photostimulated neurons in the most superficial 
imaging plane while randomly switching photostimulation targets every 192 ms (Fig. 3b, Extended Data Fig. 4; ~ 
150 target neurons per session). This randomization of photostimulation targets, combined with volumetric imaging, 
allowed rapid (30 mins) mapping of causal connections between ~300,000 pairs of neurons within a 700×700×120 
µm ALM volume (~150 targeted × ~2000 imaged neurons) per session. In each session, we imaged the activity of 
the same neurons during 1) baseline at rest, followed by 2) connectivity mapping at rest, and then 3) during 
multidirectional tongue-reaching behavior (Fig. 3c). 

A neuron that was ‘directly photostimulated’ (at lateral distance ≤ 15 µm from the photostimulation center) 
and responded to photostimulation is defined as ‘target neuron’ (Fig. 3d, Methods; 6). Neurons with 
photostimulation-evoked responses residing further away from the photostimulation center (at lateral distance > 25 
µm) are defined as ‘causally connected’ 6 to the target neuron (Fig. 3d, 3 example causally connected neurons with 
significant excitatory or inhibitory responses). The amplitude of photostimulation-evoked responses in target and 
causally connected neurons correlated on single trials (Extended Data Fig. 5a-d). Furthermore, in trials in which 
photostimulation failed to trigger a response in target neurons, there was also no response in connected neurons 
(Extended Data Fig. 5b-c). In addition to causal excitatory connections, we detected inhibitory interactions between 
excitatory neurons (Fig. 3d, right), likely mediated by polysynaptic chains involving inhibitory interneurons 
45,46,4,47,48. To assess the potential for photostimulation of neurons outside of the photostimulation plane (off-target), 
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each connectivity-mapping session included ~50 neurons that were photostimulated but did not respond. These 
‘control targets’ (i.e., non-responding neurons) were intermingled with target neurons (i.e., with neurons that 
responded to photostimulation; Extended Data Fig. 6a-b). Thus, control targets still had neurons above or below, 
as well as neurites from nearby neurons in their vicinity, which could potentially respond to photostimulation.  

Fig. 3 | Mapping causal connectivity. a, Photostimulation of target neurons (magenta) and measurement of evoked responses in 
non-stimulated neurons (green). This method detects the causal effect of increase in activity of one neuron on another neuron. b, 
Excitatory cells were photostimulated in the superficial plane, while imaging responses of other excitatory cells within a volume of 
layer 2/3, motor cortex.  c, Timeline for one experimental session. d, Example trial-averaged responses (~50 trials) of a directly 
photostimulated neuron (‘target neuron’, left) and ‘causally connected neurons’ (not directly photostimulated, right) located at different 
lateral distances from the target neuron. This method can detect inhibitory (polysynaptic) causal connections between some of the 
neurons. e, Example field of view showing the top imaged plane with responding target neurons (magenta) and ‘control targets’ 
(neurons that were photostimulated but did not respond, cyan). f, Causal ‘connection probability’ as a function of distance (Euclidian) 
between all pairs of target neurons and causally connected neurons. g-h, Responses (causal ‘connection strength’; Methods) across all 
pairs as a function of anatomical distance from each target neuron. Marginal distribution of the connection strength as a function of 
lateral (g) and axial (h) distance from target neurons. Connection strength followed a Mexican-hat like profile of excitation and 
inhibition over anatomical space, with causal connectivity extending axially more than laterally. Data in f-h is shown for target neurons 
(magenta) and control targets (cyan), and displayed as mean ± s.e.m. across sessions.  
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We analyzed causal connectivity in networks of excitatory neurons (118,941 imaged neurons; 9,093 target 
neurons; putative connection pairs, > 22,000,000).  The probability of an excitatory causal connection decayed 
quickly with distance from the target neuron (Fig. 3f, magenta), consistent with previous studies 49,46,4. Based on 
control targets, we estimated that off-target photostimulation contributed to approximately <10% of the responses in 
causally connected neurons (Fig. 3f, compare the magenta and cyan curves, corresponding to target neurons versus 
control targets; Extended Data Fig. 6c).  

We next examined the three-dimensional spatial profile of excitation and inhibition evoked by 
photostimulation, averaged across all neuronal pairs. In the lateral dimension, excitation decayed within 100 µm 
(laterally) from the target neuron (Fig. 3g bottom, red). Further away (100-250 µm laterally), inhibition dominated 
(Fig. 3g bottom, blue). On average, these inhibitory interactions between excitatory neurons were two orders of 
magnitude weaker than excitatory interactions (see Fig. 3g, top; inset). That was likely because such inhibitory 
responses were polysynaptic (because we photostimulated and imaged excitatory neurons), and inhibition is harder 
to detect with GCaMP (because cytoplasmic calcium is already low for neurons with the low spike rates seen in layer 
2/3 50. In the axial dimension, excitatory responses peaked at 60 µm below the photostimulation plane (Fig. 3h, left) 
and extended for at least 120 µm (the deepest plane we imaged simultaneously with photostimulation). Excitation 
decayed faster laterally than axially (Fig. 3h, right). This effect could not be explained by off-target spread of 
photostimulation in the axial dimension because: i) The optical point spread function of the photostimulation was 
11.7 µm axially 6, and ii) photostimulation of control targets showed much weaker responses (~10 fold)  compared 
to target neurons at all depths (Fig.3g bottom; Fig. 3h, left – compare magenta to cyan lines). This strong connectivity 
in the axial dimension could reflect preferential connections within ontogenetic radial clones of excitatory neurons 
51. In contrast to excitation, inhibition peaked at the same plane as photostimulation and gradually decayed with depth
(Fig. 3h, right). Taken together, causal connectivity in the motor cortex, similar to location tuning (Fig. 1n), was also
organized in functional columns, with a ’Mexican hat’ profile of excitation and inhibition 52,53 over anatomical space.

Relation between causal connectivity and functional organization 

We next compared the functional properties of neurons and causal connectivity.  We first analyzed the relationship 
between causal connectivity and location tuning. Neurons with stronger causal connectivity had more similar location 
tuning (Fig. 4a). This effect was apparent only for neurons residing within 100 µm from each other and could not be 
explained by distant-dependent modulation of tuning similarity alone (Extended Data Fig. 7a). We also found a 
relationship between connectivity strength measured during rest and ‘noise’ correlation measured either during rest 
or behavior, suggesting that causal connectivity mapping can explain network dynamics across different behavioral 
states (i.e., rest and behavior; Extended Data Fig. 7b-e). Taken together, neurons within a functional mini-column 
with similar location tuning were more likely to be connected. 

So far, we focused on the average pairwise relationship between causal connectivity and functional 
properties. However, connectivity maps were complex (Fig. 4b). We next analyzed the network-level organization 
of this local circuitry. Connectivity patterns between neurons were non-random: out-degree distribution of target 
neurons showed a long tail, including neurons with a very large number of out-degree connections, which we refer 
to as ‘hub neurons’ (Fig. 4c). There was a positive correlation between the number of in versus out degree connections 
(Fig. 4d; Methods). This correlation increased when restricting the analysis to subnetworks of neurons with a 
minimum out-degree connectivity (a parameter we increased progressively; Fig. 4e). In other words, subnetworks of 
neurons with higher out-degree connectivity also had higher in-degree connectivity and therefore were more 
interconnected –  resembling a ‘rich club’ phenomenon predicted from in silico models of cortical connectivity 54. 

Neurons with larger numbers of output connections are expected to have a greater influence on the local 
network. Indeed, we found that the activity of local neighboring neurons was more correlated to activity of neurons 
with more output connections (hubs; Fig. 4f). Finally, we asked whether neurons with different number of output 
connections differ in tuning properties. Hub neurons showed weaker location tuning (Fig. 4g) and weaker reward 
modulation (Fig. 4h) than less-connected neurons. Taken together, this suggests that i) local causal connectivity is 
not random, ii) connectivity predicts tuning, and iii) hub neurons are less tuned to task-related features but show 
more coupling to nearby neurons – suggesting that they may act as local coordinators of neural activity irrespective 
of the specific target location. 
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Fig. 4 | Causal connectivity in ALM. a, Comparison of causal connectivity strength with residual correlations in location tuning 
(Methods), shown for target neurons (magenta) and control targets (cyan) as mean ± s.e.m. across sessions. Neurons with similar 
location tuning were preferentially causally connected to each other. b, Example connectivity graph of the mouse motor cortex based 
on causal connectivity mapping across one session (top-view projection collapsed across all imaged planes). Node-size indicates the 
number of outgoing causal connections and arrow color the connection strength. Some neurons were much more connected than others. 
c, Distribution of the number of causal connections (out-degree) of targeted neurons shows a long tail (red), revealing hub neurons 
with a disproportionally high number of connections, inconsistent with random network connectivity (gray). d, Average correlation 
between in- and out-degree distribution of causal connections between target neurons, for different sessions. e, Correlation between 
in- and out-degree distribution of causal connections in different subnetworks of target neurons, restricted to neurons with a minimal 
out-degree connectivity (m), as a function of m, displayed as mean ± s.e.m. across sessions. f-h, The relation between number of causal 
outgoing connections (out-degree) of a neuron and its (f) noise correlation with neighboring neurons, or (g) its location-tuning or (h) 
reward-outcome tuning; displayed as mean ± s.e.m. across neuronal pairs in bins. Gray line corresponds to shuffle distribution. Data 
in c, f-h is based on all significant causal connection pairs (n = 65,390 pairs; Methods). 

Discussion 

The motor cortex plays important roles in shaping goal-directed and skilled movements 25. Activity in descending 
pyramidal tract neurons helps initiate movements  55,33. However, neural dynamics in the motor cortex have been 
typically studied in mice trained on specific motor tasks. For instance, in mice trained in a memory-guided directional 
licking task, a large proportion of ALM neurons were selective for licking direction (left/right) before and during 
licking 11,31,13–15. More generally, in trained animals, modulation of motor cortex activity is most pronounced before 
and during movement 26,8,9,29,12.  

In contrast to trained animals, we found that in naive mice, most ALM neurons showed task-related 
modulation after movement onset and even after movement. Our behavioral paradigm allowed to map neural 
responses to a continuum of target locations, similarly to studies of reaching and eye-movement in monkeys 10,8,9, 
albeit without the need for training. Neurons were tuned to target locations and modulated by reward size. In goal-
directed behaviors, action selection is influenced by the expected outcome of specific actions. Neural activity in the 
parietal and the frontal cortex is correlated with action values 38,40,39,56,57,41. Updating the neural dynamics encoding 
action values may require vectorial error signals associated not just with reward values but also with specific actions 
42,58. Conjunctive encoding of target location and reward outcome in ALM neurons (Fig. 2) signals deviations from 
expected value and the location in motor space where the action took place. This vectorial error signal may provide 
a teaching signal for learning complex goal-directed behaviors.  
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Local similarity in tuning could arise from similarity in long-range inputs and/or preferential local 
connectivity 2,4,6. Most studies relating connectivity to function focused on a few cells at a time. For example, in vivo 
calcium imaging has been combined with post hoc analysis of synaptic connectivity in brain slices 59,2,60 or via large-
scale electron microscopy reconstructions of local circuits 61,62. Although these methods detect mono-synaptic 
connections, they have low throughput. Moreover, ex vivo methods probe connectivity in a quiescent network state, 
but the effect of one neuron on another depends on the activity of the network 63,22,47,14,23. Indeed, structural 
connectivity in C. elegans does not predict functional interactions 7, stressing the need to study connectivity in vivo. 
Instead, we developed an all-optical method based on two-photon optogenetics and calcium imaging 5,4,6,7 to map 
causal connectivity between neurons in the intact brain. This method is efficient in that it allows probing many 
pairwise connections in a single session, but cannot detect subthreshold connections and does not differentiate 
monosynaptic and multi-synaptic causal interactions. 

Combining naturalistic behavior with causal connectivity mapping revealed a relationship between neuronal 
tuning to target locations and the organization of motor cortex local circuits. Tuning similarity of ALM neurons 
decayed with anatomical distance (Fig. 1n), and causal connectivity exhibited a Mexican hat profile of excitation 
and inhibition, also as a function of anatomical distance (Fig. 3g). In contrast to sensory cortex, where 
photostimulation mainly resulted in lateral inhibition 45,4,48,47,64, in the motor cortex, photostimulation elicited local 
excitation (Fig. 3g; 6), likely because the motor cortex operates closer to threshold (in a fluctuation-driven regime) 
compared to sensory cortex 65. Finally, ALM neurons with similar target location tuning were preferentially causally 
connected. The like-to-like causal connectivity motif between target location neurons was embedded within 
functional columns with a Mexican-hat profile of local excitation and longer-range inhibition. Such connectivity 
profiles are often used in continuous attractor network models to explain the neural mechanisms underlying neuronal 
tuning to continuous variables, such as orientation tuning in the visual cortex 66 and spatial tuning in the hippocampal 
formation 67,53. Learned discrete attractor dynamics drive both the selectivity and timing of dynamics in ALM neurons 
13,14 and connected structures 68,69 in tasks with fixed discrete target location. Our work opens the venue for studying 
the network mechanisms (e.g., continuous attractors) underlying naturalistic behaviors involving a continuum of 
motor goals, before learning induces changes in connectivity and dynamics.  

We identified heterogeneous 70,49 network interactions among excitatory neurons in layer 2/3. The distribution 
of out-degree connections was heavy-tailed, and included rare neurons with a large number of connections suggestive 
of network hubs. Hub neurons were identified in the structural connectome of C. elegans 71,72, in rodent hippocampus 
and neocortex during development 73,74, and predicted based on simulations of cortical columns 54. Future work will 
reveal how cortical neurons with different functional/network properties (e.g., hubs) map onto distinct cell types and 
what are the specific roles of different topological elements of motor cortex networks in driving network dynamics 
and behavior.  

Methods 

Mice 

Data are from 15 mice of either sex (age at the beginning of experiments, 60–240 d). All mice were CamK2a-tTA 
(JAX, catalog no. 007004) × Ai94 (TITL-GCaMP6s) (JAX, catalog no. 024104) × slc17a7 IRES Cre (JAX, catalog 
no. 023527), providing widespread expression of GCaMP6s in excitatory cortical neurons. All procedures were in 
accordance with protocols approved by the Janelia Institutional Animal Care and Use Committee. 

Surgical procedures 

Cranial window surgeries were performed as described previously 75. In brief, circular (diameter, 3 mm) craniotomies 
were centered over ALM (2.5 mm anterior and 1.5 mm lateral from Bregma). We expressed the soma-targeted opsin 
ST-ChrimsonR 43 in excitatory neurons by injecting a virus (1012 titer; AAV2/2 camKII-KV2.1-ChrimsonR-
FusionRed; Addgene, plasmid #102771) into the craniotomy, 400 µm below the dura (5-10 sites, 20–30 nl each), 
centered within the craniotomy and spaced by ~500 μm between injection sites. The craniotomy was covered by a 
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cranial window composed of three layers of circular glass (total thickness 450 μm). The diameter of the bottom two 
layers was 2.5 mm. The top layer was 3 mm or 3.5 mm and rested on the skull. The window was cemented using 
cyanoacrylate glue and dental acrylic (Lang Dental). A customized headbar was attached using cyanoacrylate glue 
and dental cement. 

Behavior 

After waiting 3-4 weeks to allow for viral gene expression, mice were placed on water restriction (1 ml/day) in a 
reverse light cycle room. Behavioral experiment commenced 3–7 days later. Before conducting the behavioral 
experiments, mice were head-fixed for the first time and placed under a microscope for a brief imaging session, in 
which the quality of the cranial window, the GCaMP6s signal, and the ability to detect photostimulation responses 
were assessed. These sessions, which did not involve a behavioral task, served as a habituation to the head-fixation 
procedure and the experimental conditions. Typically, the actual behavioral experiments started after a single 
habituation session. 

During behavioral experiments, mice were head-fixed, and water rewards were delivered through a lickpot, 
referred to as the ‘target’. The target location was set using electric motors (Zaber).  The entire behavior was 
controlled by a custom-programmed state machine (Bpod, Sanworks). To track orofacial movements, two CMOS 
cameras (Teledyne FLIR) viewed the face from the side and bottom under infrared (IR) light illumination (940 nm 
LED). High-speed videos were recorded at 250 Hz using BIAS software (IO rodeo, 
https://bitbucket.org/iorodeo/bias). To track tongue movements, we trained DeepLabCut76.  Contacts with the target 
were detected using a custom-built lick detector 11. 

The behavioral protocol involved mice licking a target that could appear at various locations around the 
mouse's face along the medial-lateral (left-right) and dorsal-ventral (up-down) axes (Fig. 1a). Before the first 
behavioral session, which occurred either on the same day or the day following the habituation session, the mouse 
was introduced to the target for the first time. This was accomplished by initially presenting the mouse with a target 
directly in front of its mouth and releasing small drops of water. Mice began licking the target within 1-5 minutes of 
its first presentation. Once a mouse began licking, we mapped the maximal distance it could comfortably reach with 
its tongue by gradually moving the target away from the center along the medial-lateral and dorsal-ventral axes. We 
then divided the reachable area into a grid of possible target locations. We typically used a 4×4 grid of possible 
locations, but in some sessions, we used 3×3 or 5×5 grids. The grid spacing differed along the medial-lateral versus 
the dorsal-ventral axes, according to the maximum reachable distance along each axis. Mice could locate the target 
using their sense of smell and whisker touch to guide them to the target, to ensure the task was as naturalistic as 
possible, and to avoid the need for pretraining the mice on this specific task. 

Each trial began with the target positioned out of reach (below the mouse face) for one second. It then 
ascended to a reachable location (at one of the locations on the target grid; movement time, ~150 ms). The mouse 
was given time (up to ten seconds) to initiate contact with the target, and the target was withdrawn once the mouse 
collected the reward (one second following the first contact with the target). Rather than switching the target location 
every trial, the target appeared at the same location for several consecutive trials (‘block’, consisting typically of 7 
trials of repeated locations) until switching to a new random location within the grid. 

To increase the mouse motivation in contacting the target during the first session, the reward was dispensed 
at the beginning of the trial (‘auto-reward’) – and remained attached to the target until the mouse licked it. In the 
subsequent session, the ‘auto-reward’ feature was turned off, and the reward was dispensed only after the mouse 
contacted the target. In cases when mice lost motivation and stopped licking in the middle of the session, the ‘auto-
reward’ feature was turned on. Upon change of target location (a new block), the first trial in a block was an auto-
reward trial to assist the mouse in finding the new target location. After a few behavioral sessions, the ‘auto-reward’ 
feature was no longer necessary.  

The 'regular reward’ size was ~2 µl of water (~80% of the trials). In a random subset of trials, we either 
tripled the reward size (‘reward increase’, ~10% of the trials) or omitted the reward (‘reward omission’, ~10% of the 
trials). The first trial in a block was always a regular reward trial. We introduced reward increase and reward omission 
trials only from the second behavioral session after the mice had formed an estimate of the expected reward size. 
Individual behavioral sessions comprised 786 ± 39 trials (mean ± s.e.m; the longest session had ~1429 trials) 

https://bitbucket.org/iorodeo/bias
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performed over ~2 hours (Extended Data Fig. 1). In some sessions, we readjusted the maximal reachable distance 
(grid dimensions) at the beginning of the sessions. It could take up to 150 trials to readjust grid dimensions to ensure 
that the mouse licked for all target locations. Because of these readjustments, the first 150 trials were excluded from 
the analysis.  

Microscope 

Two-photon imaging and photostimulation were performed using a customized microscope with a photostimulation 
path 6. The two-photon photostimulation path consisted of a 1040-nm pulsed laser (Fidelity 10, Coherent), a Pockels 
cell (Conoptics) for power modulation, and a pair of galvanometer mirrors (Cambridge, 6215H) for beam positioning.  
Imaging was done with a 920-nm pulsed laser (Chameleon Ultra II, Coherent) and a galvo-resonant scanner 
(Thorlabs). Volumetric imaging was performed using an electric tunable lens (Optotune) placed in the imaging path. 
Imaging and photostimulation were controlled by ScanImage (Vidrio). We applied an automatic online motion 
correction in both lateral and axial dimensions using ScanImage by taking a reference Z-stack of the imaged field of 
view at the beginning of each imaging session. The field of view was typically 738 × 688 μm2 (512 × 512 pixels2). 
Volumetric imaging was performed across four planes (typical relative depth of the planes was 0, 60, 90, 120 µm). 
Planes were imaged sequentially (33 ms per plane) by adjusting the electric tunable lens. We introduced a gap of 
15 ms by blanking the acquisition between planes to allow the lens to settle, resulting in imaging rates of 5.2 Hz for 
the entire 4-plane volumes (Extended Data Fig. 4).  

Two-photon calcium imaging  

Imaging and photostimulation were done in layer 2/3 of the anterolateral motor cortex (typically 150 µm from brain 
surface, range, 125–250 µm) 6. On each day (session), we imaged neurons from a different field of view in ALM (~5 
sessions per animal). Each session (n = 44 sessions) contained three epochs (Fig. 3c): a) Imaging of neural activity 
at rest before the start of behavior (‘rest’, ~30 mins); b) imaging and photostimulation at rest (‘rest + connectivity 
mapping’, ~30 mins); c) imaging during the multidirectional licking task (‘behavior’, ~120 mins). In addition, there 
were 9 sessions with only ‘behavior’ epoch, and 8 sessions with only ‘rest + connectivity mapping’ epoch.  

We used Suite2p 36 to identify neurons in the calcium imaging data, extract their fluorescence traces, and 
correct for neuropil contamination. Fluorescent traces of each neuron were baseline corrected (ΔF/F) by dividing the 
fluorescence trace of that neuron by the rolling max of the rolling min, using a 60 s time window. The fluorescent 
traces were deconvolved into spike trains based on the OASIS algorithm 35 in Suite2p. All analyses were done on the 
deconvolved spike rates. We refer to the deconvolved spike rate as ‘activity’ in all analyses (Fig. 1e; ΔF/F, green; 
deconvolved spike trains, black). 

Analysis of task-related neuronal tuning 

To compute task-related neural activity, neural activity was parsed into behavioral trials and aligned to the first 
contact lick on each trial. For each neuron, temporal tuning (Fig. 1f) was defined as the trial-averaged neural activity 
using all ‘regular reward’ trials (see Methods section, ‘Behavior’). Activity was normalized to the peak of the trial-
averaged neural activity in the time interval t = [-2,5] s, relative to the first contact lick. Location tuning modulation 
was defined as the normalized difference between the maximal and minimum of the trial-averaged neural activity in 
that time interval (Extended Data Fig. 2a): 
Temporal-tuning modulation (%)= 100 × max(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) −min(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)

max(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)
     (Eq. 1) 

The time of the peak was defined as peak response time. We computed temporal tuning stability by splitting all trials 
(used to compute the tuning) into two independent sets of odd and even trials. We recomputed the tuning 
independently for odd and even trials and took the Pearson correlation coefficient (r) between the odd-trial and even-
trial tuning curves as a measurement for tuning stability (Extended Data Fig. 2f). We defined the temporal tuning 
of a neuron to be significant for r (odd, even) ≥ 0.25 and location-tuning modulation ≥ 25%. 

To compute temporal tuning in each target location (location-temporal tuning; Fig. 1h) for each neuron, we 
trial-averaged neural activity for all regular-reward trials in each target location. Neural activity was aligned to the 
first contact lick on each trial. Activity in each location bin was normalized to the location-temporal peak – the peak 
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of trial-averaged neural activity in the bin with the highest activity in the time interval t = [-2, 5] s.  We calculated 
location-temporal tuning stability by analogy to temporal tuning stability (see previous paragraph). We computed 
the temporal tuning in each location using two independent sets of trials (odd, even) and took the Pearson correlation 
coefficient (r) between the temporal tuning curves for each location bin, after concatenating across locations 
(Extended Data Fig. 2g). We defined the location-temporal tuning of a neuron to be significant for r (odd, even) ≥ 
0.25. 

To generate a location-tuning map for each neuron (Fig. 1i), we took the mean neural activity over the time 
interval t = [-2, 5] s. We averaged this value across trials in each location bin. The peak location of each neuron was 
the location bin corresponding to the maximum of the location tuning map. Location tuning modulation was defined 
as the normalized difference between the maximal and minimum of the location tuning map (Extended Data Fig. 
2b): 
Location-tuning modulation (%) = 100 × max(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) −min(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)

max(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)
       (Eq. 2)   

By analogy to temporal tuning stability (see previous paragraph), we calculated location tuning stability, by 
computing location tuning maps for two independent sets of trials (odd, even) and taking the Pearson correlation 
coefficient (r) between the two maps (Extended Data Fig. 2h).  We defined the location tuning of a neuron to be 
significant for r (odd, even) ≥ 0.25 and location-tuning modulation ≥ 25%. 

To compute the distribution of peak locations across the population (Fig. 1k), we computed a two-
dimensional histogram (expressed as a percentage of cells) of peak locations of all neurons with significant location 
tuning, imaged in experiments with a 4×4 location grid (24,654 neurons).  A 4×4 location grid was chosen to ensure 
adequate location sampling, while having enough trials per location. The number of peaks (Fig. 1j) and peak width 
(Extended Data Fig. 2c) in the location tuning map of each neuron was also computed in experiments with a 4×4 
location grid. To find the number of peaks, we scaled the location tuning map from 0 to 1 (i.e., from minimum to 
maximum activity). The number of peaks was defined as the number of local maxima with activity ≥ 0.5 (in the 
scaled map), which were separated from other local maxima by bins with activity ≤ 0.5.   The peak width was defined 
also using the scaled map as the percentage of bins whose activity was ≥ 0.5, out of all bins. 

To quantify all other metrics related to location tuning (Fig. 1l-n, Fig. 2d-h, Extended Data Fig.2 b,g-i,k), 
we combined experiments with different location-grid sizes (i.e., 3×3, 4×4, or 5×5) by resampling the behavioral 
trials according to a 3×3 grid. This allowed to 1) apply the same statistical criteria in all experiments, and 2) ensure 
that there are enough trials per location bin in all experimental conditions (e.g., across reward conditions). Temporal 
tuning similarity across locations of each cell (Fig. 1m) was defined as average pairwise correlation of the temporal 
tunings in each location bin. For that calculation we included the temporal tunings in location-bins in which the 
activity was ≥ 0.25 relative to the location-temporal peak. For that analysis we included cells with significant 
temporal tuning and significant location tuning. To compute the percentage of location tuned neurons as a function 
of peak response time (Extended Data Fig. 2i) we took all neurons with significant temporal and location tuning 
and binned them according to peak response time. For each peak response time bin, we counted the percentage of 
neurons in that bin that had a significant location tuning out of all neurons with significant temporal and location 
tuning.  

To compute pairwise tuning similarity between neurons as a function of distance (Fig. 1n and Extended 
Data Fig. 2j-k) we binned all neuronal pairs according to anatomical distance (lateral, axial, or Euclidian) using 
distance bins of 10 µm (lateral), 30 µm (axial), or 10 µm (Euclidian). For every distance bin (d) we computed the 
average Pearson correlation r between the tuning of neurons in that bin. For that analysis we considered temporal 
tuning (Extended Data Fig. 2j), location tuning (Extended Data Fig. 2k), or location-temporal tuning (Fig. 1n). 
For these three different calculations we included neurons with significant temporal, location, or location-temporal 
tuning, respectively. In all analysis, we included pairs of neurons with a minimal lateral distance of at least 10 µm. 
For analysis of tuning similarity as a function of axial distance, we included only pairs of neurons that resided withing 
a range of [10, 30] µm of lateral distance from each other. For the shuffle distribution we repeated the same analysis, 
after randomly permuting the location of each neuron in lateral and axial dimensions. The data in (Fig. 1n and 
Extended Data Fig. 2j-k) is presented as mean ± s.e.m across sessions (n = 53 sessions). 

Reward-outcome tuning. Temporal tuning and location tuning for each reward condition was computed as 
described in the previous section by trial-averaging the activity according to regular-reward, reward-increase, or 



12 
 

reward-omission trials. To assess reward modulation, for each trial we computed  𝑅𝑅  – the average activity over a 
time interval t = [-2, 5] s. We defined a neuron to be significantly modulated by reward increase by comparing the 
distribution of 𝑅𝑅 for regular-reward trials 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  versus reward-increase trials  𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 using a two-sample 
Student’s t-test (at p ≤ 0.05). Analogously, we defined a neuron to be significantly modulated by reward omission 
(reward-omission modulated neuron) by comparing the distribution of 𝑅𝑅  for regular-reward trials  𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 versus 
reward-omission trials  𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  (at p≤ 0.05). Trial-averaged activity modulation by reward-increase or reward-
omission was defined in the following way: 

Reward-increase modulation (%) = 100 ×  𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖− −  𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

         (Eq. 3) 

Reward-omission modulation (%) = 100 ×  𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖− −  𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

        (Eq. 4) 

where  𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ar   ,  𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   , or  𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜   denote 𝑅𝑅 averaged over regular-reward, reward-increase, or reward-
omission trials, respectively. Note that a neuron modulated by reward-increase (or reward-omission) could be either 
up- or down- modulated. We refer to neurons with significant modulations as reward-increase or reward-omission 
modulated neurons (Fig. 2d).   

To characterize reward-increase modulated neurons we binned them according to reward increase modulation 
values (Fig. 2e). In each bin we calculated the percentage of neurons with that level of reward-increase modulation 
out of all reward-modulated neurons (Fig. 2e, gray histogram corresponding to left y-axis). We also calculated what 
percentage of neurons in each bin had a significant location tuning (Fig. 2e, red line corresponding to the right y-
axis). Analogous computation was done for reward-omission modulated neurons (Fig. 2f). 

To compare location tuning maps computed across different reward conditions (Fig. 2c, g-h), we included 
location bins with a minimum of 3 trials per reward condition, specifically regular reward, large reward, or reward 
omission. These analyses included cells meeting all three of the following criteria: 1) Cells where at least 50% of 
their location bins had 3 trials per reward condition in each bin; 2) Cells exhibiting significant modulation in response 
to reward increase or reward omission; 3) Cells displaying significant location tuning. In Fig. 2g, we calculated, for 
each cell, the Pearson correlation coefficient (r) of location-tuning maps for regular reward versus reward-increase 
trials (for neurons with significant reward-increase modulation) or for regular reward versus reward-omission trials 
(for neurons with significant reward-omission modulation). Fig. 2g displays the distribution of r values for all the 
included cells. In Fig. 2h we computed the distribution of changes of location peak-width (𝑃𝑃𝑃𝑃) based on location 
tuning maps of different reward conditions, expressed as ∆ 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =   𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 −  𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
  for reward-increase 

modulated neurons  or as ∆ 𝑃𝑃𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  𝑃𝑃𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 −  𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 𝑃𝑃𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
   for reward omission-modulated neurons. Fig. 2h 

shows the combined distribution of ∆ 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and ∆ 𝑃𝑃𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 values for all included neurons. 
We tested if the observed modulation of neural activity by reward increase, or reward omission could be 

attributed to variations in lick-rate under these conditions (Extended Data Fig. 3a). Our approach involved several 
steps. First, we binned the neural activity on each trial using time bins size of 0.5 s. Then, for each trial in the data, 
we measured the instantaneous lick-rates at each time bin. For each time bin, we binned trials according to the 
instantaneous lick rate in that time bin, using lick-rate bins ranging from 0 to 12 licks/s (with a lick-rate bin size of 2 
licks/s). We then trial averaged the neural activity as a function of all combinations of time along the trial and lick-
rate at that time. In other words, for each neuron we created a two-dimensional tuning as a function of time×lick-
rate. Note that the marginal distribution of this two-dimensional tuning along the time axis is the temporal tuning.  

We next reconstructed the expected temporal tuning of a neuron for trials involving different reward 
conditions. In this simulation, we modeled the assumption that on each trial, the neural activity was solely determined 
by the time×lick-rate tuning. To achieve this, we simulated the expected neural activity for each actual behavioral 
trial in the dataset. This simulation involved a Poisson process with the rate parameter determined by the time×lick-
rate tuning, corresponding to the instantaneous lick rate at each time bin within that trial. The simulated neural 
activity was then averaged across trials corresponding to regular-reward, reward-increase, and reward-omission 
conditions (Extended Data Fig. 3c). 

We compared reward modulation (using Eq. 3-4) for each neuron based on real tuning and simulated tuning 
(Extended Data Fig. 3d-e). In this analysis we included neurons with significant reward-increase or reward-



13 
 

omission modulations. This comparison revealed that in the vast majority of neurons, reward-related modulations in 
the real tuning are much larger compared to those derived from lick-rate-based simulated tuning. Consequently, these 
findings indicate that changes in neural activity under different reward conditions cannot be trivially attributed to 
variations in licking behavior.  

Two-photon photostimulation protocol for causal connectivity mapping 

We used an ‘all-optical’ 5,4,6,7 approach to measure causal connectivity. This approach involved two-photon 
optogenetic photostimulation of excitatory neurons and simultaneous volumetric two-photon calcium imaging of 
neural activity in other excitatory neurons in the field of view. Causal connectivity was assessed by detecting evoked 
responses in non-photostimulated neurons 4,6. Because the majority of neuronal Ca2+ influx is associated with voltage-
sensitive calcium channels opened by action potentials, these responses correspond to elevated probabilities of 
suprathreshold responses.  

Our approach involved volumetric imaging of approximately 2000 neurons while photostimulating 150 target 
targets in a rapidly interleaved manner, allowing rapid (~30 mins) mapping of causal connections between ~300,000 
pairs of neurons in vivo. Our approach increased the number of connection pairs tested in a single experiment by 
more than 10-fold, compared to previous all-optical methods 4), as described in detail below. 

The targets for two-photon photostimulation were selected with a custom MATLAB code and computer 
software (ScanImage) using a reference image acquired during the `rest only` imaging epoch (Fig. 3c). The actual 
connectivity mapping was conducted during the ‘rest + connectivity mapping’ epoch.  

We randomly picked J targets for photostimulation (typically J = ~200 targets). Photostimulation targets were 
always located in the most superficial plane of the four-plane imaged volume. This is because motor cortex 
connectivity is directed from superficial layers to deeper layers 44. We photostimulated the same target while 
acquiring a single imaged volume and then transitioned to a new random target as we began imaging the next volume. 
Thus, the rate of target switching during photostimulation aligned with the rate of volumetric imaging (5.2 Hz).  All 
targets were photostimulated in a pseudo-random order, ensuring that all J targets were photostimulated once every 
J trials (for a total of ~50 photostimulation trials per target). 

We stimulated specific targets with spiral photostimulation patterns 5. To prevent crosstalk from 
photostimulation into GCaMP6s imaging, we timed the photostimulation to coincide with the 15 ms gaps in 
acquisition between each of the four imaged planes within a volume. Spiral scans lasted 12 milliseconds, resulting 
in a total of 48 milliseconds of photostimulation per target (spread over the acquisition of a single imaged volume). 
The power of the photostimulation beam at the sample was 100–150 mW.  

Analysis of photostimulation responses  

All analyses of photostimulation-induced responses were done on the deconvolved spike rates, referred to as 
‘activity’ (see Methods section ‘Two-photon calcium imaging’). The activity of each neuron was z-scored. This was 
done to ensure that the response of each neuron to photostimulation is measured relative to its own variability and 
because inferring absolute levels of spike rates from calcium imaging data is challenging. We show the ΔF/F 
responses before deconvolution and z-scoring for display purpose only (Fig. 3d and Extended Data Fig. 5a-c). The 
change in the z-scored activity of the 𝑖𝑖𝑡𝑡ℎ neuron upon photostimulation of the 𝑗𝑗𝑡𝑡ℎ target neuron was defined as: 
Δ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 – 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖            (Eq. 5) 
𝐴𝐴𝑖𝑖𝑖𝑖, the activity of 𝑖𝑖𝑡𝑡ℎ neuron during photostimulation of the 𝑗𝑗𝑡𝑡ℎ target, was defined as a mean activity of that neuron 
over a time window of 0.5 ≥ t > 0.05 s, from photostimulation onset, averaged over all trials on which the 𝑗𝑗𝑡𝑡ℎ target 
was photostimulated. The random sequencing of photostimulation was instrumental for isolating the response to 
photostimulation of individual targets by eliminating the need to wait for the activity evoked by previous random 
target photostimulation to revert to its baseline state. This was achieved by averaging data across trials corresponding 
to the photostimulation of each specific target, as described above. In addition, for each 𝑖𝑖𝑖𝑖 pair, we excluded trials in 
which nearby targets (positioned within 50 µm laterally from the 𝑖𝑖𝑡𝑡ℎ neuron) were photostimulated immediately 
before or after ((i.e., within ± 1 trial) the trials with photostimulation of the  𝑗𝑗𝑡𝑡ℎ target. If there were less than 20 
included trials per 𝑖𝑖𝑖𝑖 pair, we excluded this pair from the analysis (on average we were left with 36 included trials 
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per pair). 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 of the 𝑖𝑖𝑡𝑡ℎ neuron was defined as the average activity of that neuron over all trials that 
1) did not have a photostimulation of any target within 50 µm from the 𝑖𝑖𝑡𝑡ℎ neuron, and 2) also did not have 
photostimulation of nearby targets within ±1 trials from the  𝑗𝑗𝑡𝑡ℎ target photostimulation. 

 Δ Activityij is the causal connection strength for any pair in which i ≠ j, or as strength of the target response 
to direct photostimulation for i = j. The significance of Δ Activityij was determined using one-sample Student’s t-
test (at p-value < 0.05), computed for the distribution of Δ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖  on all included individuals trials when the 𝑗𝑗𝑡𝑡ℎ 
target was photostimulated, against the null hypothesis that the distribution has a mean equal to zero.   

A neuron was ‘directly photostimulated’ if it was within 15 µm of the photostimulation center. ‘Target 
neurons’ are directly-photostimulated neurons that significantly increased their activity  (p ≤ 0.01, t-test)  in 
response to direct photostimulation (Fig. 3d, 6). ‘Control targets’ are neurons that were directly photostimulated but 
did not show a significant activity increase (p > 0.1, t-test).  In a typical experiment, J targets decomposed into ~ 150 
target neurons and ~50 control targets (Fig. 3e). Control targets were within a median distance of 53.8 µm lateral 
distance to target neurons (Extended Data Fig. 6b). Therefore, control targets were intermingled with target neurons, 
but simply did not respond to direct photostimulation. Control targets still had neurons above or below, as well as 
neurites from nearby neurons, which could potentially respond to photostimulation (Extended Data Fig. 6).  

Neurons with significant changes in activity (Δ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖  ) residing further away from the photostimulation 
center (at lateral distance > 25 µm) were considered ‘causally connected’ to the target neuron at photostimulation 
center (Fig. 3d). We used a cutoff of 25 µm lateral distance to define causal connections because neurons at a lateral 
distance smaller than 20 µm from the photostimulation center could still be directly photostimulated, albeit weakly. 
We set this threshold by comparing the photostimulation evoked response of target neurons to that of control targets 
(Fig. 3g and Extended Data Fig. 6) and by characterizing the photostimulation resolution in our previous study 6.  

Causal connection probability as a function of distance from the target neuron (Fig. 3f) was defined:  
Connection probability as a function of distance (d) =(∑ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (𝑑𝑑)

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (𝑑𝑑)
𝐽𝐽
𝑗𝑗=1 ) /J       (Eq. 6) 

We binned all the 𝑖𝑖, 𝑗𝑗 pairs according to the Euclidean distance (within the 3D imaged volume) between the 𝑖𝑖𝑡𝑡ℎ neuron 
and the 𝑗𝑗𝑡𝑡ℎ target, using 10 µm distance-from-target bins (d). For every distance from the target bin (d), we computed 
the proportion of connected neurons (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) by counting the neurons that had a 1) significant and 2) positive 
change in activity (Δ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗), out of all neurons (Nall) at that bin, and averaged across all targets J. To increase 
the robustness of our estimation of connection probability, the photostimulation trials for every target were divided 
into two non-overlapping sets (odd and even). We used the odd trials to compute the significance of the connection 
(i.e., the significance of the change in activity, Δ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗), and the even trials to compute the sign of the connection 
(i.e., whether Δ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗  was positive or negative). We included only pairs with positive activity changes because 
we photostimulated and imaged excitatory neurons. This calculation was done separately for target neurons and 
control targets. For these analyses, we included sessions (n=24 sessions) with at least 25 target neurons and 25 control 
targets, photostimulated with 150 mW at sample (the power used in most experiments). The data in Fig. 3f is 
presented as mean ± s.e.m of connection probabilities across sessions.   

Causal connection strength as a function of distance from the photostimulated target (Fig. 3g) was defined:  

Connection strength as a function of distance (d) =(∑ ∑ 𝛥𝛥 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗 𝑁𝑁(𝑑𝑑)
𝑖𝑖=1

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑑𝑑)
𝐽𝐽
𝑗𝑗=1 ) /J       (Eq. 7) 

We binned all the 𝑖𝑖, 𝑗𝑗 pairs according to distance (lateral, axial, or both) between the 𝑖𝑖𝑡𝑡ℎ neuron and the 𝑗𝑗𝑡𝑡ℎ target, 
using 10 µm distance-from-target bins (d) for lateral distance, or 30 µm for axial distance (corresponding to the 
distance between imaging planes). For every distance-from-target bin (d) we computed the average change in activity 
𝛥𝛥 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗   by summing all the Δ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗 for all neurons in that bin, divided by the number of all neurons (Nall) 
at that bin,  averaged across all targets J. This calculation was done separately for directly photostimulated and control 
targets. Note that in contrast to connection probability calculation, which focused on pairs with significant positive 
change in activity (Eq. 6), here we included the response of all neurons, regardless of the sign or significance 
of 𝛥𝛥 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. To characterize the axial profile of connection strength at different lateral distances from the 
photostimulation center (Fig. 3h), we used the same calculation as in (Eq. 7) but restricted the analysis to neuronal 
pairs residing within specific ranges of lateral distance from the photostimulation center (at lateral distances of [25, 
100 µm] for Fig. 3h, left; or [100, 250 µm] for Fig3.h, right). For these analyses, we included sessions (n=24 sessions) 
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with at least 25 target neurons and 25 control targets, photostimulated with 150 mW at sample (the power used in 
most experiments). The data in Fig. 3g-h is presented as mean ± s.e.m of connection probabilities across sessions.   

To compare photostimulation evoked response on single trials (Extended Data Fig. 5), we categorized trials 
according to the strength of the evoked response (Δ Activity) of target neurons, into trials with ‘strong’ or ‘weak’ 
response of the target (Methods). Strong and weak trials corresponded to the 20% top and bottom percentiles, 
respectively, of the response (Δ Activity) of the target neuron across photostimulation trials. We show the response 
on strong and weak trials as ΔF/F for display purposes only (Extended Data Fig. 5a-c). For this calculation, 
responses were computed over a time window of 2 ≥ t > 0.05 s following photostimulation.  We also computed the 
Pearson correlation (r) between Δ Activity of target neurons and causally connected neurons on a trial-by-trial basis, 
using all trials. Data in Extended Data Fig. 5d is shown for all neuronal pairs with significant causal connections 
(at p < 0.01; n = 33,830 connection pairs). 

 
Relating causal connectivity to functional properties 

Causal connectivity versus noise correlations. We analyzed the relationship between causal connectivity (analogous 
to effective connectivity) and noise correlations (sometimes referred to as functional connectivity 77). We computed 
the pairwise noise correlation between each target neuron and the rest of the neurons with lateral pairwise distances 
> 25 µm. Noise correlations were defined as Pearson correlation r between the activity of the 𝑗𝑗𝑡𝑡ℎ target neuron and 
the 𝑖𝑖𝑡𝑡ℎ imaged neuron, with activity binned in time (1.5 s bins).  Connection strength for these pairs was computed 
as Δ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 (Eq. 5). Importantly, noise correlations were measured independently from connection strength 
measurements. Specifically, noise correlations were measured during either the ‘rest only’ or ‘behavior’ epochs, 
whereas connectivity was measured during the ‘rest + connectivity’ epoch. To relate noise correlations to connection 
strength, we binned all pairs according to their causal connectivity, and for each bin, we took the average noise 
correlation of all pairs in that bin (Extended Data Fig. 7b-c top, red). We included bins that had at least 50 neuronal 
pairs per session, from at least 5 sessions in each bin. 

Causal connectivity versus tuning correlations. We analyzed the relationship between causal connectivity 
and correlations in location tuning, sometimes called signal correlations – in an analogous way to noise correlation 
analysis (see previous paragraph). Correlations in location tuning were defined as Pearson correlation r between the 
location tuning curves of the 𝑗𝑗𝑡𝑡ℎ target neuron and the 𝑖𝑖𝑡𝑡ℎ imaged neuron (Extended Data Fig. 7a top, red). For this 
analysis, we included all pairs that satisfied the following criteria: 1) 25 µm < pairwise lateral distance ≤ 100 µm (to 
include only pairs of cells within distance range for which there was a significant connection probability – see Fig. 
3f); and 2) both the 𝑖𝑖𝑡𝑡ℎ and the 𝑗𝑗𝑡𝑡ℎ neurons had a significant location tuning (Methods; location tuning map stability  
r (odd, even) ≥ 0 and location-tuning modulation ≥ 25%). We included bins that had at least 25 neuronal pairs per 
session, from at least 5 sessions in each bin.  

Distance-dependence of correlations and connection strength. Both causal connection strength (Fig. 3g) and 
noise correlations decrease as a function of anatomical distance between neurons 27. We examined if the association 
between connection strength and noise correlations goes beyond what can be explained by mutual distance 
dependence. All included pairs (as detailed in the preceding section) were binned based on their lateral-axial distance, 
using 10 µm lateral bins and 30 µm axial bins (the distance between planes). The noise correlation values among cell 
pairs in the same lateral-axial bins were randomly shuffled. In this way, the average distance-dependent profile of 
noise correlation remained the same in the shuffled data. However, within each distance bin in the shuffled data, 
there was no longer a relationship between noise correlation and connectivity strength for individual pairs – beyond 
what can be explained by mutual distance dependence.   

The shuffled data enabled us to estimate: 1) the extent to which the relationship between connectivity strength 
and noise correlation is explicable by distance dependency alone, and 2) to unveil the residual relationship that 
remains beyond what is explained by distance dependency. To determine the residual noise correlation, r (Extended 
Data Fig. 7b-c, bottom), for each connectivity strength bin, we calculated the average noise correlation in that bin 
after subtracting the corresponding shuffled average noise correlation values (Extended Data Fig. 7b-c, top). These 
analyses were conducted separately for each session, and presented as mean ± s.e.m across sessions. We also did the 
opposite analysis by binning all pairs according to noise correlation values and computing the residual causal 
connectivity strength (Extended Data Fig. 7d-e).  
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Similar mutual dependency on anatomical distance exists between pairwise connection strength (Fig. 3g) and 
correlations in location tuning (Fig. 1n).  We applied an analogous approach to uncover the relationship between 
connection strength and correlations in location tuning (Fig. 4a, Extended Data Fig. 7a). We repeated these analyses 
separately for target neurons and control targets. The residual tuning correlation measurement is a very conservative 
estimate of the relationship between tuning and connectivity strength. This is because the mutual distance-
dependency between tuning correlations and connection strength (Fig. 1n; Fig. 3g) is expected under the assumptions 
of 1) distance-dependent synaptic connectivity 49, and 2) that like-to-like connectivity contributes to tuning formation 
66,2,53. 

 
Network analysis of causal connectivity patterns 

To perform network analysis of causal connectivity between neurons, for each target neuron, we computed its out-
degree 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜  as the number of neurons it was causally connected to within the imaged volume. For each target neuron, 
we also computed its in degree 𝑑𝑑𝑖𝑖𝑖𝑖 as the number of neurons it receives causal connections from. 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 was potentially 
limited by the number of imaged neurons (~2000). In contrast, 𝑑𝑑𝑖𝑖𝑖𝑖 was limited by the number of target neurons (~150 
target neurons) – because we could know if a particular target receives a connection only if we directly 
photostimulated one of the other target neurons, which happened to be presynaptic to this particular neuron. Thus, 
our experimental approach was more suitable for studying outgoing (𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜) rather than incoming (𝑑𝑑𝑖𝑖𝑖𝑖)  connections, 
and therefore, most of our analyses were focused on out-degree connections.  

For 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 calculations, we included only 1) significant excitatory connections – i.e., with positive change in 
activity; and 2) only those that were within 25 µm < lateral distance ≤ 100 µm range from the target neuron (to 
include only cells within distance range for which there was a significant connection probability – see Fig. 3f). Data 
in Fig. 4c, f-h is based on all causal connections pairs that fit the above inclusion criteria (n = 65,390 connection 
pairs; n = 44 sessions). When estimating 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜  we corrected for variability in cell density around each target neuron. 
Specifically, we defined relative cell density as total number of neurons within 25 µm < lateral distance ≤ 100 µm 
range from the target neuron, divided by the average of this number across all targets. For example, if cell density 
around a particular target neuron is less than average, its relative cell density will be 1 < ). We then divided 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 by 
the relative cell density. In all analyses we focused only on excitatory connections because we photostimulated and 
imaged excitatory neurons and therefore considered any inhibitory responses to be polysynaptic (whereas excitatory 
responses could be monosynaptic or polysynaptic). Directed causal connectivity graphs (for a representative session; 
Fig. 4b) were drawn as a top-view projection of the imaged field of view (collapsed across all imaged planes), with 
nodes corresponding to the location of imaged neurons. Node size indicated the number of outgoing causal 
connections for each target neuron (𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜) and edges indicated connection direction and strength (Fig. 4b, colored 
arrows).  

To compute the out-degree distribution (Fig. 4c, red), we binned the out-degree values (𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜) for all target 
neurons using equally spaced bins (from 0 to maximal 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜,  using all target neurons across sessions (n = 44 sessions), 
and took the proportion of neurons in each bin out of all target neurons. We compared the out-degree distribution of 
a motor cortex network to that of a random network model (Erdős–Rényi), with an average degree 𝑑𝑑  (defined as the 
average 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 across all target neurons). The degree distribution of such a random network (Fig. 4c, gray) follows a 
Poisson distribution with a rate parameter equal to  𝑑𝑑 (at the limit when 𝑑𝑑 ≪  number of neurons 78). 
 For a ‘fair’ comparison between in- and out-degree connectivity, we limited our analysis to a subnetwork S 
consisting of only target neurons (Fig. 4d-e). For each neuron in such a subnetwork, we could fully map its causal 
connectivity with other neurons in the subnetwork, which we used to calculate its in-degree (𝑑𝑑𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) and out-
degree (𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠). For this analysis we included all pairs with lateral distance > 25 µm. For all neurons in this 
subnetwork, we computed the Pearson correlations coefficients r between 𝑑𝑑𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  and 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 in each 
session. Fig. 4d shows the distribution of r across sessions (n = 52 sessions). We then extended this analysis to 
progressively more densely connected subnetworks of neurons. Specifically, we limited the subnetwork of target 
neurons only to those having their 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 above a specific minimal out-degree (𝑚𝑚). For each value of 𝑚𝑚 (ranging from 
0 to 20) we computed the mean Pearson correlation r of the correlation between  𝑑𝑑𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠   and 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  across 
all sessions (Fig. 4e). For each value of 𝑚𝑚, we included only sessions that had at least 25 target neurons with 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 > 



17 
 

𝑚𝑚 (52-18 sessions, for different values of 𝑚𝑚). The distribution in Fig. 4d corresponds to 𝑚𝑚 =  0. Data in Fig. 4e is 
presented as mean ± s.e.m across sessions. 

To examine the relationship between the out-degree distribution and the functional properties of neurons 
(Fig. 4f-h), we binned the out-degree (𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜)  distribution of target neurons. In Fig. 4f, we assessed local noise 
correlation as a function of out-degree. To achieve this, we calculated the average Pearson correlation r between the 
target neuron's activity and the activity of each neuron within a local neighborhood. Local neighborhood was defined 
as all neurons within a lateral distance range of [25, 100] µm from the target neuron. To calculate noise correlations, 
neural activity during the ‘Rest only’ epoch was binned in time using 1.5 s time bins.  For each out-degree bin, we 
averaged the local noise correlation values of all target neurons residing in that bin. As a control, we shuffled the 
local noise correlation values across all of these neurons 100 times. In Fig. 4g, we assessed location tuning as a 
function of out-degree. As a metric for location tuning of each neuron, we calculated the location tuning modulation 
(Fig. 4g, left) or location tuning stability (Fig. 4g, right; see Method section, ‘Analysis of task-related neuronal 
tuning’). We then averaged the values of either of these metrics across all target neurons residing in the same out-
degree bin. As a control, we shuffled the location metrics of all target neurons 100 times.  

Analogously, in Fig. 4h, we assessed reward-outcome tuning as a function of out-degree. To achieve this, 
we calculated the absolute values of reward-increase modulation and reward-omission modulation of each target 
neuron (Eq. 3-4) and took their average as an overall metric for reward-outcome modulation. We then averaged these 
reward modulation values across all target neurons residing in the same out-degree bin.   As a control, we shuffled 
the reward modulation values (computed as described above) across all of these neurons 100 times.  

Data availability: Behavioral and neurophysiological data was stored and analyzed in custom pipelines in the 
DataJoint framework 79 and will be available upon request. 

Code availability: Custom MATLAB code that was used for data analysis is available on Github: 
https://github.com/arsenyf/2p_code_arseny 
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Extended Data Figures 

 

 

 

 

 
 

Extended Data Fig. 1 | Multidirectional tongue-reaching behavior.  a, Videography of tongue trajectories in 4 behavioral 
sessions of one mouse in the multidirectional tongue reaching behavior. Vertical line (white) indicates the time of target appearance. 
In each trial (horizontal lines) the tongue location is color-coded according to its dorsal-ventral coordinate (normalized to the maximal 
dorsal-ventral tongue location detected in each session). Mice produced hundreds of trials already from the first behavioral session. b, 
Lick rate as a function of time from the target appearance.  Red, the interval marking the target movement towards a reachable location 
(‘Target ON’); Blue, average target retraction time (‘Target OFF’).  Target is retracted 1 s after reward delivery or maximal time-out 
time (Methods), therefore its retraction time (blue) is varied on each trial. Most licks occur within less than 2 s from the target 
appearance. c, Correlation between tongue horizontal location and target horizontal location during the trial. Data in b-c is displayed 
as mean ± s.e.m. across sessions. 
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Extended Data Fig. 2 | Location-temporal tuning properties.  a-b, Distribution of temporal tuning modulation (a) and 
location tuning modulation (b) of all cells. Vertical lines (red; in a-b, f-h) indicate the cutoff used to categorize cells as neurons with 
significant tuning (Methods).  c, Distribution of peak width of location tuning maps of location-tuned neurons. d, Traces showing trial-
averaged responses in each target location (left) and location tuning maps (right) of 4 example cells imaged on the first day of behavior. 
A 4×4 location grid was used in this experiment.  e, Location-temporal tuning of four example cells showing tuning stability. Left, 
traces showing trial-averaged responses in each target location. Right, location tuning map computed using two non-overlapping sets 
of trials (odd and even trials). A 5×5 location grid was used in this experiment. f-h, Distribution of stability of temporal tuning (f) and 
location-temporal tuning (g), and location tuning (h) of all cells computed as Pearson correlation (r) between tuning calculated based 
on odd versus even trials. i, Preferred peak-response time of neurons with locational tuning. j-k, Tuning similarity between pairs of 
neurons as a function of their anatomical distance for temporal tuning (j) and location tuning (k); displayed as mean ± s.e.m. across 
sessions. 
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Extended Data Fig. 3 | Reward-outcome modulation is not explained by variations in lick-rate.  a, Distribution 
of lick-rates at different times during the trial, for reward-increase, reward-omission, or regular trials. b, Temporal tuning of six 
examples cells with reward-outcome modulation, averaged across trials with different reward conditions. c, Simulated temporal tuning 
of the same cells, generated solely based on their tuning to lick-rate at different times of the behavioral trial (Methods). Note the 
absence of reward modulation in simulated tuning curves (c), which suggests that reward modulation in the real data (b) is not 
explained by difference in lick-rates for different reward conditions for most cells (except Cell 6). d, Reward-increase modulation of 
all neurons with significant reward-increase modulation, computed based on simulated tuning versus real tuning. Each dot represents 
a neuron. e, Same as in (d) for neurons with significant reward-omission modulation. Data in a,d,e is displayed as mean ± s.e.m. across 
sessions. Data in b-c is displayed as mean ± s.e.m. across trials. 
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Extended Data Fig. 4 | Two-photon photostimulation and volumetric imaging protocol. a, Left, Schematics of 
two-photon photostimulation of targeted neurons (magenta) and measurement of evoked responses in non-stimulated neurons (green) 
using volumetric calcium imaging. Right, example imaged volume of layer 2/3, motor cortex, with two photostimulation targets 
indicated (magenta). Both photostimulated target neurons and imaged neurons were excitatory cells. b, Schematics of photostimulation 
timing during volumetric imaging shown for two consecutive photostimulation trials. Target cells were photostimulated in the 
superficial plane (‘plane 1’). Imaging each plane lasted 33 ms, followed by a 15 ms gap without imaging. Four spiral photostimulations 
(each spiral lasting for 3 ms, see inset) occurred in the gap between each imaged plane (Methods). 
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Extended Data Fig. 5 | Photostimulation evoked responses on single trials. a-c, Comparison of the amplitude of 
photostimulation evoked response of the target neuron and causally connected neurons, shown for 3 example neuronal pairs. Trials 
were categorized according to the strength of the evoked response (Δ Activity) of the target neurons, into trials with ‘strong’ or ‘weak’ 
response of the target (Methods). Responses of both target and causally connected neurons are shown by trial averaging the activity 
using strong (red), weak (blue), or all (black) trials. d) Distribution of Pearson correlation (r) between Δ Activity of target neurons and 
causally connected neurons on a trial-by-trial basis, shown for all neuronal pairs with significant causal connections (n = 33,830 
connection pairs; Methods). 
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Extended Data Fig. 6 | Spatial localization and causal connectivity of control and target neurons.  a, Example 
field of view showing the top imaged plane with responding target neurons (magenta) and non-responding neurons referred to as 
‘control targets’ (cyan). b, Distribution of lateral distances between each control target and the closest neuronal target for all control 
targets.  c, Causal ‘connection probability’ as a function of anatomical distance (lateral and axial) between all pairs of targets and 
causally connected neurons, shown for target neurons (magenta), all control targets (cyan). We also analyzed connection probability 
only for control targets that were intermingled with target neurons (within less than 25 µm laterally from target neurons, blue). Top, 
display the marginal distribution of the three bottom panels as a function of lateral distance;  displayed as mean ± s.e.m. across sessions. 
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Extended Data Figure 7 – Relationship between causal connectivity and tuning or noise correlations.     a, Comparison 
of causal connectivity strength with location tuning correlation measured during multidirectional reaching behavior (Methods). Top, 
Location-tuning correlations versus causal connectivity strength. Real data (‘Data’, red); distance-preserved shuffled control 
distribution (‘Distance shuffled control’, gray) represents shuffling of the correlation for all neurons residing in the same distance from 
the target neuron (Methods). Bottom, Residual tuning correlations versus causal connectivity strength. Residual tuning correlation 
(‘Residual, blue) is obtained by subtracting the ‘Distance shuffled control’ from ‘Data’ (top; Methods), and represents the residual 
relationship that remains between connection strength and correlation in location tuning, beyond what is explained by mutual distance 
dependency. b-c, Comparison of causal connectivity strength measured during rest, with residual ‘noise correlations’ (Methods) 
measured for the same neurons during rest (b) or multidirectional reaching behavior (c). Top, Noise correlations versus causal 
connectivity strength. Noise correlations are measured during rest (b) or multidirectional reaching behavior (c), for the same neurons. 
Causal connectivity is measured in an independent rest session epoch.  Real data (‘Data’, red); distance-preserved shuffled control 
distribution (‘Distance shuffled control’, gray) represents shuffling of the correlation for all neurons residing in the same distance from 
the target neuron (Methods). Bottom, Residual noise correlations versus causal connectivity strength. Residual noise correlation 
(‘Residual, blue) is obtained by subtracting the ‘Distance shuffled control’ from ‘Data’ (top; Methods), and represents the residual 
relationship that remains between connection strength and noise correlations, beyond what is explained by mutual distance 
dependency. Causal connectivity could accurately predict noise correlations (sometimes referred as ‘functional connectivity’) across 
states.  d-e Same in b-c, but for the opposite relationship, i.e., causal connectivity strength versus noise correlations. This indicates to 
what extent noise correlation can predict, on average, the strength of causal connectivity in the motor cortex. Data in all panels is 
displayed as mean ± s.e.m. across sessions. 




